I. Pattison
The role of tributary relative timing and sequencing in controlling large floods
Pattison, I.; Lane, S.N.; Hardy, R.J.; Reaney, S.M.
Authors
S.N. Lane
Professor Richard Hardy r.j.hardy@durham.ac.uk
Professor
Dr Sim Reaney sim.reaney@durham.ac.uk
Associate Professor
Abstract
Hydrograph convolution is a product of tributary inputs from across the watershed. The time-space distribution of precipitation, the biophysical processes that control the conversion of precipitation to runoff and channel flow conveyance processes, are heterogeneous and different areas respond to rainfall in different ways. We take a subwatershed approach to this and account for tributary flow magnitude, relative timing, and sequencing. We hypothesize that as the scale of the watershed increases so we may start to see systematic differences in subwatershed hydrological response. We test this hypothesis for a large flood (T > 100 years) in a large watershed in northern England. We undertake a sensitivity analysis of the effects of changing subwatershed hydrological response using a hydraulic model. Delaying upstream tributary peak flow timing to make them asynchronous from downstream subwatersheds reduced flood magnitude. However, significant hydrograph adjustment in any one subwatershed was needed for meaningful reductions in stage downstream, although smaller adjustments in multiple tributaries resulted in comparable impacts. For larger hydrograph adjustments, the effect of changing the timing of two tributaries together was lower than the effect of changing each one separately. For smaller adjustments synergy between two subwatersheds meant the effect of changing them together could be greater than the sum of the parts. Thus, this work shows that while the effects of modifying biophysical catchment properties diminishes with scale due to dilution effects, their impact on relative timing of tributaries may, if applied in the right locations, be an important element of flood management.
Citation
Pattison, I., Lane, S., Hardy, R., & Reaney, S. (2014). The role of tributary relative timing and sequencing in controlling large floods. Water Resources Research, 50(7), 5444-5458. https://doi.org/10.1002/2013wr014067
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 1, 2014 |
Online Publication Date | Jun 6, 2014 |
Publication Date | Jul 7, 2014 |
Deposit Date | Mar 6, 2015 |
Publicly Available Date | Mar 24, 2015 |
Journal | Water Resources Research |
Print ISSN | 0043-1397 |
Electronic ISSN | 1944-7973 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 50 |
Issue | 7 |
Pages | 5444-5458 |
DOI | https://doi.org/10.1002/2013wr014067 |
Keywords | Flood magnitude, Subwatershed interactions, Relative timing, Hydraulic modeling, Flood risk management. |
Public URL | https://durham-repository.worktribe.com/output/1411630 |
Files
Published Journal Article
(968 Kb)
PDF
Copyright Statement
Pattison, I., S. N. Lane, R. J. Hardy, and S. M. Reaney, (2014), The role of tributary relative timing and sequencing in controlling large floods, Water Resources Research, 50, 7, 5444-5458, 10.1002/2013WR014067 (DOI). To view the published open abstract, go to http://dx.doi.org and enter the DOI.
You might also like
Fluvial processes and landforms
(2022)
Journal Article
The Effect of Biofilms on Turbulent Flow over Permeable Beds
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search