Skip to main content

Research Repository

Advanced Search

The role of tributary relative timing and sequencing in controlling large floods

Pattison, I.; Lane, S.N.; Hardy, R.J.; Reaney, S.M.

The role of tributary relative timing and sequencing in controlling large floods Thumbnail


Authors

I. Pattison

S.N. Lane



Abstract

Hydrograph convolution is a product of tributary inputs from across the watershed. The time-space distribution of precipitation, the biophysical processes that control the conversion of precipitation to runoff and channel flow conveyance processes, are heterogeneous and different areas respond to rainfall in different ways. We take a subwatershed approach to this and account for tributary flow magnitude, relative timing, and sequencing. We hypothesize that as the scale of the watershed increases so we may start to see systematic differences in subwatershed hydrological response. We test this hypothesis for a large flood (T > 100 years) in a large watershed in northern England. We undertake a sensitivity analysis of the effects of changing subwatershed hydrological response using a hydraulic model. Delaying upstream tributary peak flow timing to make them asynchronous from downstream subwatersheds reduced flood magnitude. However, significant hydrograph adjustment in any one subwatershed was needed for meaningful reductions in stage downstream, although smaller adjustments in multiple tributaries resulted in comparable impacts. For larger hydrograph adjustments, the effect of changing the timing of two tributaries together was lower than the effect of changing each one separately. For smaller adjustments synergy between two subwatersheds meant the effect of changing them together could be greater than the sum of the parts. Thus, this work shows that while the effects of modifying biophysical catchment properties diminishes with scale due to dilution effects, their impact on relative timing of tributaries may, if applied in the right locations, be an important element of flood management.

Citation

Pattison, I., Lane, S., Hardy, R., & Reaney, S. (2014). The role of tributary relative timing and sequencing in controlling large floods. Water Resources Research, 50(7), 5444-5458. https://doi.org/10.1002/2013wr014067

Journal Article Type Article
Acceptance Date Jun 1, 2014
Online Publication Date Jun 6, 2014
Publication Date Jul 7, 2014
Deposit Date Mar 6, 2015
Publicly Available Date Mar 24, 2015
Journal Water Resources Research
Print ISSN 0043-1397
Electronic ISSN 1944-7973
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 50
Issue 7
Pages 5444-5458
DOI https://doi.org/10.1002/2013wr014067
Keywords Flood magnitude, Subwatershed interactions, Relative timing, Hydraulic modeling, Flood risk management.
Public URL https://durham-repository.worktribe.com/output/1411630

Files

Published Journal Article (968 Kb)
PDF

Copyright Statement
Pattison, I., S. N. Lane, R. J. Hardy, and S. M. Reaney, (2014), The role of tributary relative timing and sequencing in controlling large floods, Water Resources Research, 50, 7, 5444-5458, 10.1002/2013WR014067 (DOI). To view the published open abstract, go to http://dx.doi.org and enter the DOI.






You might also like



Downloadable Citations