M. Ricci
Sub-nanometre mapping of the aquaporin-water interface with multifrequency atomic force microscopy
Ricci, M.; Quinlan, R.A.; Voïtchovsky, K.
Authors
Roy Quinlan r.a.quinlan@durham.ac.uk
Emeritus Professor
Professor Kislon Voitchovsky kislon.voitchovsky@durham.ac.uk
Professor
Abstract
Aquaporins are integral membrane proteins that regulate the transport of water and small molecules in and out of the cell. In eye lens tissue, circulation of water, ions and metabolites is ensured by a microcirculation system in which aquaporin-0 (AQP0) plays a central role. AQP0 allows water to flow beyond the diffiusion limit through lens membranes where it naturally arranges in a square lattice. Malfunction of AQP0 is related to numerous deseases such as cataract. Despite considerable research into its structure, function and dyanmics, the interface between the protein and the surrounding liquid and the effect of the lattice arrangement on the behaviour of water at the interface with the membrane are still not fully understood. Here we use a multifrequency atomic force microscopy (AFM) approach to map both the liquid at the interface with AQP0 and the protein itself with sub-nanometer resolution. Imaging using the fundamental eigenmode of the AFM cantilever probes mainly the interfacial water at the surface of the membrane. Results highlight a well-defined region that surrounds AQP0 tetramers and where water exhibits a higher affinity for the protein. Imaging at the second eigenmode is dominated by the mechanical response of the protein and provides sub-molecular details of the protein surface and sub-surface structure. The relationship between modes and harmonics is also examined.
Citation
Ricci, M., Quinlan, R., & Voïtchovsky, K. (2017). Sub-nanometre mapping of the aquaporin-water interface with multifrequency atomic force microscopy. Soft Matter, 13(1), 187-195. https://doi.org/10.1039/c6sm00751a
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 15, 2016 |
Online Publication Date | Jun 16, 2016 |
Publication Date | Jan 7, 2017 |
Deposit Date | Jun 27, 2016 |
Publicly Available Date | Jun 29, 2016 |
Journal | Soft Matter |
Print ISSN | 1744-683X |
Electronic ISSN | 1744-6848 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 13 |
Issue | 1 |
Pages | 187-195 |
DOI | https://doi.org/10.1039/c6sm00751a |
Public URL | https://durham-repository.worktribe.com/output/1408932 |
Files
Published Journal Article (Final published version)
(3.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Final published version
Published Journal Article (Advance online version)
(3.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version
Accepted Journal Article
(1.3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
You might also like
Ions Adsorbed at Amorphous Solid/Solution Interfaces Form Wigner Crystal-like Structures.
(2023)
Journal Article
The Effect of Ageing on the Structure and Properties of Model Liquid Infused Surfaces
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search