Peter J. Cameron
Lengths of words in transformation semigroups generated by digraphs
Cameron, Peter J.; Castillo-Ramirez, Alonso; Gadouleau, Maximilien; Mitchell, James D.
Authors
Alonso Castillo-Ramirez
Dr Maximilien Gadouleau m.r.gadouleau@durham.ac.uk
Associate Professor
James D. Mitchell
Abstract
Given a simple digraph D on n vertices (with n≥2n≥2 ), there is a natural construction of a semigroup of transformations ⟨D⟩⟨D⟩ . For any edge (a, b) of D, let a→ba→b be the idempotent of rank n−1n−1 mapping a to b and fixing all vertices other than a; then, define ⟨D⟩⟨D⟩ to be the semigroup generated by a→ba→b for all (a,b)∈E(D)(a,b)∈E(D) . For α∈⟨D⟩α∈⟨D⟩ , let ℓ(D,α)ℓ(D,α) be the minimal length of a word in E(D) expressing αα . It is well known that the semigroup SingnSingn of all transformations of rank at most n−1n−1 is generated by its idempotents of rank n−1n−1 . When D=KnD=Kn is the complete undirected graph, Howie and Iwahori, independently, obtained a formula to calculate ℓ(Kn,α)ℓ(Kn,α) , for any α∈⟨Kn⟩=Singnα∈⟨Kn⟩=Singn ; however, no analogous non-trivial results are known when D≠KnD≠Kn . In this paper, we characterise all simple digraphs D such that either ℓ(D,α)ℓ(D,α) is equal to Howie–Iwahori’s formula for all α∈⟨D⟩α∈⟨D⟩ , or ℓ(D,α)=n−fix(α)ℓ(D,α)=n−fix(α) for all α∈⟨D⟩α∈⟨D⟩ , or ℓ(D,α)=n−rk(α)ℓ(D,α)=n−rk(α) for all α∈⟨D⟩α∈⟨D⟩ . We also obtain bounds for ℓ(D,α)ℓ(D,α) when D is an acyclic digraph or a strong tournament (the latter case corresponds to a smallest generating set of idempotents of rank n−1n−1 of SingnSingn ). We finish the paper with a list of conjectures and open problems.
Citation
Cameron, P. J., Castillo-Ramirez, A., Gadouleau, M., & Mitchell, J. D. (2017). Lengths of words in transformation semigroups generated by digraphs. Journal of Algebraic Combinatorics, 45(1), 149-170. https://doi.org/10.1007/s10801-016-0703-9
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 25, 2016 |
Online Publication Date | Aug 8, 2016 |
Publication Date | Feb 1, 2017 |
Deposit Date | Aug 26, 2016 |
Publicly Available Date | Aug 31, 2016 |
Journal | Journal of Algebraic Combinatorics |
Print ISSN | 0925-9899 |
Electronic ISSN | 1572-9192 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 45 |
Issue | 1 |
Pages | 149-170 |
DOI | https://doi.org/10.1007/s10801-016-0703-9 |
Public URL | https://durham-repository.worktribe.com/output/1405714 |
Files
Published Journal Article (Final published version)
(587 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Final published version
Published Journal Article (Advance online version)
(608 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version
Accepted Journal Article
(346 Kb)
PDF
Copyright Statement
© The Author(s) 2016. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
You might also like
Graphs with minimum degree-entropy
(2024)
Journal Article
Factorisation in the semiring of finite dynamical systems
(2024)
Journal Article
Graphs with minimum fractional domatic number
(2023)
Journal Article
Bent functions in the partial spread class generated by linear recurring sequences
(2022)
Journal Article
Expansive automata networks
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search