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Abstract Given a simple digraph D on n vertices (with n ≥ 2), there is a natural
construction of a semigroup of transformations 〈D〉. For any edge (a, b) of D, let
a → b be the idempotent of rank n − 1 mapping a to b and fixing all vertices other
than a; then, define 〈D〉 to be the semigroup generated by a → b for all (a, b) ∈ E(D).
For α ∈ 〈D〉, let �(D, α) be the minimal length of a word in E(D) expressing α. It is
well known that the semigroup Singn of all transformations of rank at most n − 1 is
generated by its idempotents of rank n−1. When D = Kn is the complete undirected
graph, Howie and Iwahori, independently, obtained a formula to calculate �(Kn, α),
for any α ∈ 〈Kn〉 = Singn ; however, no analogous non-trivial results are known when
D �= Kn . In this paper, we characterise all simple digraphs D such that either �(D, α)

is equal to Howie–Iwahori’s formula for all α ∈ 〈D〉, or �(D, α) = n − fix(α) for all
α ∈ 〈D〉, or �(D, α) = n − rk(α) for all α ∈ 〈D〉. We also obtain bounds for �(D, α)

when D is an acyclic digraph or a strong tournament (the latter case corresponds to
a smallest generating set of idempotents of rank n − 1 of Singn). We finish the paper
with a list of conjectures and open problems.
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1 Introduction

For any n ∈ N, n ≥ 2, let Singn be the semigroup of all singular (i.e. non-invertible)
transformations on [n] := {1, . . . , n}. It is well known (see [2]) that Singn is generated
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Fig. 1 �T5
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by its idempotents of defect 1 (i.e. the transformations α ∈ Singn such that α2 = α

and rk(α) := |Im(α)| = n − 1). There are exactly n(n − 1) such idempotents, and
each one of them may be written as (a → b), for a, b ∈ [n], a �= b, where, for any
v ∈ [n],

(v)(a → b) :=
{
b if v = a,

v otherwise.

Motivated by this notation, we refer to these idempotents as arcs.
In this paper, we explore the natural connections between simple digraphs on [n]

and subsemigroups of Singn . For any subsetU ⊆ Singn , denote by 〈U 〉 the semigroup
generated by U . For any simple digraph D with vertex set V (D) = [n] and edge set
E(D), we associate the semigroup

〈D〉 := 〈
(a → b) ∈ Singn : (a, b) ∈ E(D)

〉
.

We say that a subsemigroup S of Singn is arc-generated by a simple digraph D if
S = 〈D〉.

For the rest of the paper, we use the term ‘digraph’ to mean ‘simple digraph’ (i.e.
a digraph with no loops or multiple edges). A digraph D is undirected if its edge
set is a symmetric relation on V (D), and it is transitive if its edge set is a transitive
relation on V (D). We shall always assume that D is connected (i.e. for every pair
u, v ∈ V (D) there is either a path from u to v, or a path from v to u) because otherwise
〈D〉 ∼= 〈D1〉×· · ·×〈Dk〉, where D1, . . . , Dk are the connected components of D. We
say that D is strong (or strongly connected) if for every pair u, v ∈ V (D), there is a
directed path from u to v. We say that D is a tournament if for every pair u, v ∈ V (D)

we have (u, v) ∈ E(D) or (v, u) ∈ E(D), but not both.
Many famous examples of semigroups are arc-generated. Clearly, by the discussion

of the first paragraph, Singn is arc-generated by the complete undirected graph Kn .
In fact, for n ≥ 3, Singn is arc-generated by D if and only if D contains a strong
tournament (see [3]). The semigroup of order-preserving transformations On := {α ∈
Singn : u ≤ v ⇒ uα ≤ vα} is arc-generated by an undirected path Pn on [n], while
the Catalan semigroup Cn := {α ∈ Singn : v ≤ vα, u ≤ v ⇒ uα ≤ vα} is arc-
generated by a directed path �Pn on [n] (see [9, Corollary 4.11]). The semigroup of
non-decreasing transformations OIn := {α ∈ Singn : v ≤ vα} is arc-generated by the
transitive tournament �Tn on [n] (Fig. 1 illustrates �T5).

Connections between subsemigroups of Singn and digraphs have been studied
before (see [9–12]). The following definition, which we shall adopt in the follow-
ing sections, appeared in [12]:
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Definition 1 For a digraph D, the closure D̄ of D is the digraph with vertex set
V (D̄) := V (D) and edge set E(D̄) := E (D) ∪ {(a, b) : (b, a) ∈ E (D) is in a
directed cycle ofD}.

Say that D is closed if D = D̄. Observe that 〈D〉 = 〈D̄〉 for any digraph D.
Recall that the orbits of α ∈ Singn are the connected components of the digraph

on [n] with edges {(x, xα) : x ∈ [n]}. In particular, an orbit � of α is called cyclic
if it is a cycle with at least two vertices. An element x ∈ [n] is a fixed point of α if
xα = x . Denote by cycl(α) and fix(α) the number of cyclic orbits and fixed points of
α, respectively. Denote by ker(α) the partition of [n] induced by the kernel of α (i.e.
the equivalence relation {(x, y) ∈ [n]2 : xα = yα}).

We introduce some further notation. For any digraph D and v ∈ V (D), define the
in-neighbourhood and the out-neighbourhood of v by

N−(v) := {u ∈ V (D) : (u, v) ∈ E(D)} and N+(v) := {u ∈ V (D) : (v, u) ∈ E(D)},

respectively.We extend these definitions to any subsetC ⊆ V (D) by letting N ε(C) :=⋃
c∈C N ε(c), where ε ∈ {+,−}. The in-degree and out-degree of v are deg−(v) :=

|N−(v)| and deg+(v) := |N+(v)|, respectively, while the degree of v is deg(v) :=
|N−(v) ∪ N+(v)|. For any two vertices u, v ∈ V (D), the D-distance from u to v,
denoted by dD(u, v), is the length of a shortest path from u to v in D, provided
that such a path exists. The diameter of D is diam(D) := max{dD(u, v) : u, v ∈
V (D), dD(u, v) is defined}.

Let D be any digraph on [n]. We are interested in the lengths of transformations of
〈D〉 viewed as words in the free monoid D∗ := {(a → b) : (a, b) ∈ E(D)}∗. Say that
a word ω ∈ D∗ expresses (or evaluates to) α ∈ 〈D〉 if α = ωφ, where φ : D∗ → 〈D〉
is the evaluation semigroup morphism. For any α ∈ 〈D〉, let �(D, α) be the minimum
length of a word in D∗ expressing α. For r ∈ [n − 1], denote

�(D, r) := max {�(D, α) : α ∈ 〈D〉, rk(α) = r} ,

�(D) := max {�(D, α) : α ∈ 〈D〉} .

The main result in the literature in the study of �(D, α)was obtained by Howie and
Iwahori, independently, when D = Kn .

Theorem 1.1 [4,5] For any α ∈ Singn,

�(Kn, α) = n + cycl(α) − fix(α).

Therefore, �(Kn, r) = n + ⌊ 1
2 (r − 2)

⌋
, for any r ∈ [n − 1], and �(Kn) = �(Kn, n −

1) = ⌊ 3
2 (n − 1)

⌋
.

In the following sections, we study �(D, α), �(D, r), and �(D), for various classes
of digraphs. In Sect. 2, we characterise all digraphs D on [n] such that either �(D, α) =
n + cycl(α) − fix(α) for all α ∈ 〈D〉, or �(D, α) = n − fix(α) for all α ∈ 〈D〉, or
�(D, α) = n − rk(α) for all α ∈ 〈D〉. In Sect. 3, we are interested in the maximal
possible length of a transformation in 〈D〉 of rank r among all digraphs D on [n] of
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certain class C; we denote this number by �Cmax(n, r). In particular, when C is the class
of acyclic digraphs, we find an explicit formula for �Cmax(n, r). When C is the class
of strong tournaments, we find upper and lower bounds for �Cmax(n, r) (and for the
analogously defined �Cmin(n, r)). Finally, in Sect. 4 we provide a list of conjectures and
open problems.

2 Arc-generated semigroups with short words

Let D be a digraph on [n], n ≥ 3, and α ∈ 〈D〉. Theorem 1.1 implies the following
three bounds:

�(D, α) ≥ n + cycl(α) − fix(α) ≥ n − fix(α) ≥ n − rk(α). (1)

The lowest bound is always achieved for constant transformations (i.e. transforma-
tions of rank 1).

Lemma 2.1 For any digraph D on [n], if α ∈ 〈D〉 has rank 1, then �(D, α) = n − 1.

Proof It is clear that �(D, α) ≥ n − 1 because α has n − 1 non-fixed points. Let
Im(α) = {v0} ⊆ [n]. Note that, for any v ∈ [n], there is a directed path in D from v

to v0 (as otherwise, α /∈ 〈D〉). For any d ≥ 1, let

Cd := {v ∈ [n] : dD(v, v0) = d}.

Clearly, [n]\{v0} = ⋃m
d=1 Cd , where m := maxv∈[n]{dD(v, v0)} and the union is

disjoint. For any v ∈ Cd , let v′ be a vertex in Cd−1 such that (v → v′) ∈ D. For any
distinct v, u ∈ Cd and any choice of v′, u′ ∈ Cd−1, the arcs (v → v′) and (u → u′)
commute; hence, we can decompose α as

α = ©1
d=m ©v∈Cd (v → v′),

where the composition of arcs is done from m down to 1. ��
Remark 1 Using a similar argument as in the previous proof, we may show that 〈D〉
contains all constant transformations if and only if D is strongly connected.

Inspired by the bounds given in (1), we characterise all the connected digraphs D
on [n] satisfying the following conditions:

∀α ∈ 〈D〉, �(D, α) = n + cycl(α) − fix(α); (C1)

∀α ∈ 〈D〉, �(D, α) = n − fix(α); (C2)

∀α ∈ 〈D〉, �(D, α) = n − rk(α). (C3)
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2.1 Digraphs satisfying condition (C1)

Theorem 1.1 says that Kn satisfies (C1). In order to characterise all digraphs satisfy-
ing (C1), we introduce the following property on a digraph D:

(�) If dD(v0, v2) = 2 and v0, v1, v2 is a directed path in D, then N+ ({v1, v2}) ⊆
{v0, v1, v2}.
We shall study the strong components of digraphs satisfying property (�). We state

few observations that we use repeatedly in this section.

Remark 2 Suppose that D satisfies property (�). If v0, v1, v2 is a directed path in D and
deg+(v1) > 2, or deg+(v2) > 2, then (v0, v2) ∈ E(D). Indeed, if (v0, v2) /∈ E(D),
then dD(v0, v2) = 2, so, by property (�), N+ ({v1, v2}) ⊆ {v0, v1, v2}; this contradicts
that deg+(v1) > 2, or deg+(v2) > 2.

Remark 3 Suppose that D satisfies property (�). If v0, v1, v2 is a directed path in D
and either v1 or v2 has an out-neighbour not in {v0, v1, v2}, then (v0, v1) ∈ E(D).

Remark 4 If D satisfies property (�), then diam(D) ≤ 2. Indeed, if v0, v1, . . . , vk is
a directed path in D with dD(v0, vk) = k ≥ 3, then v0, v1, v2 is a directed path in D
and v2 has an out-neighbour v3 /∈ {v0, v1, v2}; by Remark 3, (v0, v2) ∈ E(D), which
contradicts that dD(v0, vk) = k.

Note that digraphs satisfying property (�) are a slight generalisation of transitive
digraphs.

Let D be a digraph and let C1 and C2 of be two strong components of D. We say
that C1 connects to C2 if (v1, v2) ∈ E(D) for some v1 ∈ C1, v2 ∈ C2; similarly, we
say that C1 fully connects to C2 if (v1, v2) ∈ E(D) for all v1 ∈ C1, v2 ∈ C2. The
strong component C1 is called terminal if there is no strong component C �= C1 of D
such that C1 connects to C .

Lemma 2.2 Let D be a closed digraph satisfying property (�). Then, any strong
component of D is either an undirected path P3 or complete. Furthermore, P3 may
only appear as a terminal strong component of D.

Proof Let C be a strong component of D. Since D is closed, C must be undirected.
The lemma is clear if |C | ≤ 3, so assume that |C | ≥ 4. We have two cases:

Case 1 Every vertex in C has degree at most 2. Then C is a path or a cycle. Since
|C | ≥ 4 and diam(D) ≤ 2, then C is a cycle of length 4 or 5; however, these
cycles do not satisfy property (�).

Case 2 There exists a vertex a ∈ C of degree 3 or more. Any two neighbours of a are
adjacent: indeed, for any u, v ∈ N (a), u, a, v is a path and deg+(a) > 2, so
(u, v) ∈ E(D) by Remark 2. Hence, the neighbourhood of a is complete and
every neighbour of a has degree 3 or more. Applying this rule recursively, we
obtain that every vertex in C has degree 3 or more, and the neighbourhood of
every vertex is complete. Therefore, C is complete because diam(D) ≤ 2.

Finally, if P3 is a strong component of D, there cannot be any edge coming out of
it because of property (�), so it must be a terminal component. ��
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Lemma 2.3 Let D be a closed digraph satisfying property (�). Let C1 and C2 be
strong components of D, and suppose that C1 connects to C2.

(i) If C2 is non-terminal, then C1 fully connects to C2.
(ii) Let |C2| = 1. If either |C1| �= 2, or the vertex in C1 that connects to C2 has

out-degree at least 3, then C1 fully connects to C2.
(iii) Let |C2| = 2. If not all vertices in C1 connect to the same vertex in C2, then C1

fully connects to C2.
(iv) If |C2| ≥ 3, then C1 fully connects to C2.

Proof Recall that C1 and C2 are undirected because D is closed. If |C1| = 1 and
|C2| = 1, clearly C1 fully connects to C2. Henceforth, we assume |C1| ≥ 2 or
|C2| ≥ 2. Let c1 ∈ C1 and c2 ∈ C2 be such that (c1, c2) ∈ E(D). As C1 is a
non-terminal, Lemma 2.2 implies that C1 is complete.

(i) As C2 is non-terminal, there exists d ∈ D\(C1 ∪ C2) such that (c2, d) ∈ E(D).
Suppose that |C1| ≥ 2. Then, for any c′

1 ∈ C1\{c1}, c′
1, c1, c2 is a directed path

in D with d ∈ N+(c2), so Remark 3 implies (c′
1, c2) ∈ E(D). Suppose now

that |C2| ≥ 2. Then, for any c′
2 ∈ C2\{c2}, c1, c2, c′

2 is a directed path in D with
d ∈ N+(c2), so again (c1, c′

2) ∈ E(D). Therefore, C1 fully connects to C2.
(ii) Suppose that |C1| ≥ 2. If |C1| > 2, then deg+(c1) > 2, because C1 is complete.

Thus, for each c′
1 ∈ C1\{c1}, c′

1, c1, c2 is a directed path in D with deg+(c1) > 2,
so (c′

1, c2) ∈ E(D) by Remark 2. As |C2| = 1, this shows that C1 fully connects
to C2.

(iii) Let C2 = {c2, c′
2} and let c′

1 ∈ C1\{c1} be such that (c′
1, c

′
2) ∈ E(D). For

any b, d ∈ C1, b �= c1, d �= c′
1, both b, c1, c2 and d, c′

1, c
′
2 are directed paths

in D with c′
2 ∈ N+(c2) and c2 ∈ N+(c′

2); hence, (b, c2), (d, c′
2) ∈ E(D) by

Remark 3.
(iv) Suppose that C2 = P3. Say C2 = {c2, c′

2, c
′′
2} with either dD(c2, c′′

2) = 2
or dD(c′

2, c
′′
2) = 2. In any case, c1, c2, c′

2 is a directed path in D with c′′
2 ∈

N+({c2, c′
2}), so (c1, c′

2) ∈ E(D) by Remark 3; now, c1, c′
2, c

′′
2 is a directed

path in D with c2 ∈ N+({c′
2, c

′′
2}), so (c1, c′′

2) ∈ E(D). Hence, c1 is connected
to all vertices of C2. As C1 is complete, a similar argument shows that every
c′
1 ∈ C1\{c1} connects to every vertex in C2.
Suppose now that C2 = Km for m ≥ 3. By a similar reasoning as the pre-
vious paragraph, we show that (c1, v) ∈ E(D) for all v ∈ C2. Now, for any
c′
1 ∈ C1\{c1}, v ∈ C2, c′

1, c1, v is a directed path in D so (c′
1, v) ∈ E(D) by

Remark 3. ��
Lemma 2.4 Let D be a closed digraph satisfying property (�). Let Ci , i = 1, 2, 3, be
strong components of D, and suppose that C1 connects to C2 and C2 connects to C3.
If C1 does not connect to C3, then |C2| = |C3| = 1, C3 is terminal in D, and C2 is
terminal in D\C3.

Proof By Lemma 2.3 (i), C1 fully connects to C2. Assume that C1 does not connect
to C3. Let ci ∈ Ci , i = 1, 2, 3, be such that (c1, c2), (c2, c3) ∈ E(D). If C2 has a
vertex different from c2, Remark 3 ensures that (c1, c3) ∈ E(D), which contradicts
our hypothesis. Then |C2| = 1. The same argument applies ifC3 has a vertex different
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from c3, so |C3| = 1. Finally, Remark 3 applied to the path c1, c2, c3 also implies that
C3 is terminal in D and C2 is terminal in D\C3. ��

The following result characterises all digraphs satisfying condition (C1).

Theorem 2.5 Let D be a connected digraph on [n]. The following are equivalent:

(i) For all α ∈ 〈D〉, �(D, α) = n + cycl(α) − fix(α).
(ii) D is closed satisfying property (�).

Proof In order to simplify notation, denote

g(α) := n + cycl(α) − fix(α).

First, we show that (i) implies (ii). Suppose �(D, α) = g(α) for all α ∈ 〈D〉. We use
the one-line notation for transformations: α = (1)α (2)α . . . (k)α, where x = (x)α
for all x > k, x ∈ [n]. Clearly, if D is not closed, there exists an arc α ∈ 〈D〉\D, so
1 < �(D, α) �= g(α) = 1. In order to prove that property (�) holds, let 1, 2, 3 be a
shortest path in D. If (2 → v) ∈ 〈D〉, for some v ∈ [n]\{1, 2, 3}, then α = 3v3v ∈
〈D〉, but g(α) = 2 �= �(D, α) = 3. If (3 → v) ∈ 〈D〉, then α = 3vvv ∈ 〈D〉, but
g(α) = 3 �= �(D, α) = 4. Therefore, N+({2, 3}) ⊆ {1, 2, 3}, and (�) holds.

Conversely, we show that (ii) implies (i). Let α ∈ 〈D〉. We remark that any cycle
of α belongs to a strong component of D.

Claim 2.6 Let C be a strong component of D. Then either α fixes all vertices of C or
|(Cα) ∩ C | < |C |.
Proof Suppose that α|C , the restriction of α toC , is non-trivial and |(Cα)∩C | = |C |.
Then α|C is a permutation of C . Let u ∈ C and suppose that (u → v) is the first arc
moving u in a word expressing α in D∗. If v ∈ C , we have uα = vα, which contradicts
that α|C is a permutation. If v ∈ C ′ for some other strong component C ′ of D, then
uα /∈ C which again contradicts our assumption. ��
Claim 2.7 Let u, v ∈ [n] be such that uα = v. If dD(u, v) = 2, then:

1. v is in a terminal component of D.
2. There is a path u, w, v of length 2 in D such that wα = vα = v; for any other

path u, x, v of length 2 in D, we have xα ∈ {x, v}.
Proof Let C1 and C2 be strong components of D such that u ∈ C1 and v ∈ C2. We
analyse the four possible cases in which dD(u, v) = 2. In the first three cases, we
use the fact that 〈P3〉 ∼= O3, hence we can order u < w < v and α is an increasing
transformation of the ordered set {u, w, v}; thus uα = wα = vα = v.

Case 1 C1 = C2. By Lemma 2.2,C1 ∼= P3 and it is a terminal component. Therefore,
2. holds as there is a unique path from u to v.

Case 2 C1 connects to C2 and |C2| �= 2. As dD(u, v) = 2, C1 does not fully connect
C2, so, by Lemma 2.3, |C2| = 1, C2 is terminal, |C1| = 2, and the vertex
w ∈ C1 connecting to C2 = {v} has out-degree 2. Then, by property (�),
u, w, v is the unique path from u to v.
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Case 3 C1 connects to C2 and |C2| = 2. As dD(u, v) = 2, C1 does not fully connect
C2, so, by Lemma 2.3, C2 is terminal and u, w, v is the unique path of length
two from u to v, where w is the other vertex of C2.

Case 4 C1 does not connect toC2. Since dD(u, v) = 2, there exist strong components
C (1), . . . ,C (k) such that C1 connects to C (i) and C (i) connects to C2, for
all 1 ≤ i ≤ k. By Lemma 2.4, C (i) = {xi }, C2 = {v} is terminal and
N+(xi ) = {v} for all i . Thus u, xi , v are the only paths of length two from
u to v; in particular, xiα ∈ {xi , v} for all xi . As uα = v, there must exist
1 ≤ j ≤ k such that w := x j is mapped to v. ��

Now we produce a word ω ∈ D∗ expressing α of length g(α). Define

U := {u ∈ D : dD(u, uα) = 2}.

For every u ∈ U , let u′ be a vertex in D such that u, u′, uα is a path and u′α = uα.
The existence of u′ is guaranteed by Claim 2.7. Define a word ω0 ∈ D∗ by

ω0 := ©u∈U (u → u′)(u′ → uα).

Sort the strong components of D in topological order: C1, . . . ,Ck , i.e. for i �= j ,
Ci connects to C j only if j > i . For each 1 ≤ i ≤ k, define

Si := {v ∈ Ci\(U ∪U ′) : vα ∈ Ci },

where U ′ := {u′ : u ∈ U }, and consider the transformation βi : Ci → Ci defined by

xβi =
{
xα if x ∈ Si
x otherwise.

If |Ci | ≤ 2 or Ci ∼= P3, then cycl(βi ) = 0 and βi can be computed with |Ci | −
fix(βi ) arcs. Otherwise, Ci is a complete undirected graph. If βi ∈ Sing(Ci ), then
by Theorem 1.1, there is a word ωi ∈ C∗

i ⊆ D∗ of length |Ci | + cycl(βi ) − fix(βi )
expressing βi . Suppose now that βi is a non-identity permutation of Ci . By Claim 2.6,
α does not permute Ci and there exists hi ∈ Ci\(Ciα). Note that hi ∈ Ci\Si . Define
β̂i ∈ Sing(Ci ) by

x β̂i =

⎧⎪⎨
⎪⎩
xα if x ∈ Si
ai if x = hi
x otherwise,

where ai is any vertex in Si . Then α|Si = β̂|Si . Again by Theorem 1.1, there is a
word ωi ∈ C∗

i ⊆ D∗ of length |Ci | + cycl(β̂i ) − fix(β̂) = |Ci | + cycl(βi ) − fix(βi )
expressing β̂i .
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The following word maps all the vertices in [n]\(U ∪U ′ ∪ Ci ) that have image in
Ci :

ω′
i = © {

(a → aα) : a ∈ [n]\(U ∪U ′ ∪ Ci ), aα ∈ Ci
}
.

Finally, let

ω := ω0ωkω
′
k . . . ω1ω

′
1 ∈ D∗.

It is easy to check that ω indeed expresses α. Since
∑k

i=1 fix(βi ) = fix(α) +∑k
i=1 |Ci\Si | and ∑k

i=1 �(ω′
i ) = ∑k

i=1 |Ci\(U ∪U ′ ∪ Si )|, we have

�(ω) = 2|U | +
k∑

i=1

(�(ωi ) + �(ω′
i )) = n +

k∑
i=1

cycl(βi ) − fix(α) = g(α).

��

2.2 Digraphs satisfying condition (C2)

The characterisation of connected digraphs satisfying condition (C2) is based on the
classification of connected digraphs D such that cycl(α) = 0, for all α ∈ 〈D〉.

For k ≥ 3, let
k be the directed cycle of length k. Consider the digraphsΓ1, Γ2, Γ3
and Γ4 as illustrated below:

1 2 3

4

5

Γ1 Γ2

2 1

3

4

5

Γ3

12

3

4

Γ4

1

2 3

4

5

Lemma 2.8 Let D be a connected digraph on [n]. The following are equivalent:

(i) For all α ∈ 〈D〉, cycl(α) = 0.
(ii) D has no subdigraph isomorphic to Γ1, Γ2, Γ3, Γ4, or 
k , for all k ≥ 5.

Proof In order to prove that (i) implies (ii), we show that if Γ is equal to Γi or 
k ,
for i ∈ [4], k ≥ 5, then there exists α ∈ 〈Γ 〉 such that cycl(α) �= 0.
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• If Γ = Γ1, take

α := (3 → 4)(4 → 5)(1 → 4)(4 → 3)(2 → 4)(4 → 1)(3 → 4)(4 → 2)

= 21555.

• If Γ = Γ2, take

α := (3 → 4)(4 → 5)(1 → 3)(3 → 4)(2 → 3)(3 → 1)(4 → 3)(3 → 2)

= 21555.

• If Γ = Γ3, take

α := (3 → 4)(2 → 3)(1 → 2)(3 → 1) = 2144.

• If Γ = Γ4, take

α = (3 → 4)(4 → 5)(2 → 3)(3 → 4)(1 → 2)(4 → 1) = 21555.

• Assume Γ = 
k for k ≥ 5. Consider the following transformation of [k]:

(u ⇒ v) := (u → u1) . . . (ud−1 → v),

where u, u1, . . . , ud−1, v is the unique path from u to v on the cycle 
k . Take

α := (1 ⇒ k − 3)(k ⇒ k − 4)(k − 1 ⇒ 1)(k − 2 ⇒ k)

(k − 3 ⇒ k − 1)(k − 4 ⇒ k − 2).

Then, α = (k − 1)(k − 1) . . . (k − 1) k 1 (k − 2), where (k − 1) appears k − 3
times, has the cyclic component (k − 2, k).

Conversely, assume that D satisfies (ii). If n ≤ 3, it is clear that cycl(α) = 0, for
all α ∈ 〈D〉, so suppose n ≥ 4. We first obtain some key properties about the strong
components of D̄.

Claim 2.9 Any strong component of D̄ is an undirected path, an undirected cycle of
length 3 or 4, or a claw K3,1 (i.e. a bipartite undirected graph on [4] = [3] ∪ {4}).
Moreover, if a strong component of D is not an undirected path, then it is terminal.

Proof Let C be a strong component of D̄. Clearly, C is undirected and, by (ii), it
cannot contain a cycle of length at least 5. If C has a cycle of length 3 or 4, then the
whole of C must be that cycle and C is terminal (otherwise, it would contain Γ3 or
Γ4, respectively). If C has no cycle of length 3 and 4, then C is a tree. It can only be a
path or K3,1, for otherwise it would contain Γ1 or Γ2; clearly, K3,1 may only appear
as a terminal component. ��
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Suppose there is α ∈ 〈D〉 that has a cyclic orbit (so cycl(α) �= 0). This cyclic orbit
must be contained in a strong component C of D̄, and Claim 2.9 implies that C ∼= Γ ,
where Γ ∈ {K3,1, 
̄s, Pr : s ∈ {3, 4}, r ∈ N}. If Γ = K3,1 or Γ = 
̄s , then C is a
terminal component, so α acts on C as some transformation β ∈ 〈Γ 〉; however, it is
easy to check that no transformation in 〈Γ 〉 has a cyclic orbit. If Γ = Pr , for some r ,
then α acts on C as a partial transformation β of Pr . Since 〈Pr 〉 = Or , β has no cyclic
orbit. ��

We introduce a new property of a connected digraph D:

(��) For every strong component C of D, |C | ≤ 2 if C is non-terminal, and |C | ≤ 3
if C is terminal.

Lemma 2.10 Let D be a closed connected digraph on [n] satisfying property (�). The
following are equivalent:

(i) D satisfies property (��).
(ii) D has no subdigraph isomorphic to Γ1, Γ2, Γ3, Γ4, or 
k , for some k ≥ 5.

Proof If (i) holds, it is easy to check that D does not contain any subdigraphs isomor-
phic to Γ1, Γ2, Γ3, Γ4, or 
k for some k ≥ 5.

Conversely, suppose that (ii) holds. Let C be a strong component of D. If C is
non-terminal, Lemma 2.2 implies that C is complete; hence, |C | ≤ 2 as otherwise
D would contain Γ4 as a subdigraph. If C is terminal, Lemma 2.2 implies that C is
complete or P3; hence, |C | ≤ 3 as otherwise D would contain Γ3 as a subdigraph. ��
Theorem 2.11 Let D be a connected digraph on [n]. The following are equivalent:

(i) For all α ∈ 〈D〉, �(D, α) = n − fix(α).
(ii) D is closed satisfying properties (�) and (��).

Proof Clearly, D satisfies (i) if and only if it satisfies condition (C1) and cycl(α) = 0,
for all α ∈ 〈D〉. By Theorem 2.5 and Lemmas 2.8 and 2.10, D satisfies (i) if and only
if D satisfies (ii). ��

2.3 Digraphs satisfying condition (C3)

The following result characterises digraphs satisfying condition (C3).

Theorem 2.12 Let D be a connected digraph on [n]. The following are equivalent:

(i) For every α ∈ 〈D〉, �(D, α) = n − rk(α).
(ii) 〈D〉 is a band, i.e. every α ∈ 〈D〉 is idempotent.
(iii) Either n = 2 and D ∼= K2, or there exists a bipartition V1 ∪ V2 of [n] such that

(i1, i2) ∈ E(D) only if i1 ∈ V1, i2 ∈ V2.

Proof Clearly (i) implies (ii): if �(D, α) = n− rk(α), then rk(α) = fix(α) by inequal-
ity (1), so α is idempotent.

Now we prove that (ii) implies (iii). If there exist u, v, w ∈ [n] pairwise distinct
such that (u, v), (v,w) ∈ E(D), then α = (v → w)(u → v) is not an idempotent.
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Therefore, for n ≥ 3, if every α ∈ 〈D〉 is idempotent, then a vertex in D either has
in-degree zero or out-degree zero: this corresponds to the bipartition of [n] into V1
and V2.

We finally prove that (iii) implies (i). Let n ≥ 3 and suppose that there exists a
bipartition V1 ∪ V2 of [n] such that (i1, i2) ∈ E(D) only if i1 ∈ V1, i2 ∈ V2. Then
for any α ∈ 〈D〉, all elements of V2 are fixed by α and i1α ∈ {i1} ∪ N+(i1) for
any i1 ∈ V1. In particular, any non-fixed point of α is mapped to a fixed point, so
r := rk(α) = fix(α). Let J := {v1, . . . , vn−r } ⊆ V1 be the set of non-fixed points of
α; therefore

α = (v1 → v1α) . . . (vn−r → vn−rα),

where each one of the n− r arcs above belongs to 〈D〉. The result follows by inequal-
ity (1). ��

3 Arc-generated semigroups with long words

Fix n ≥ 2. In this section, we consider digraphs D that maximise �(D, r) and �(D).
For r ∈ [n − 1], define

�max(n, r) := max {�(D, r) : V (D) = [n]} ,

�max(n) := max {�(D) : V (D) = [n]} .

The first few values of �max(n, r), calculated with the GAP package Semigroups
[7], are given in Table 1. By Lemma 2.1, �max(n, 1) = n−1 for all n ≥ 2; henceforth,
we shall always assume that n ≥ 3 and r ∈ [n − 1]\{1}.

In the following sections, we restrict the class of digraphs that we consider in the
definition of �max(n, r) and �max(n) to two important cases: acyclic digraphs and
strong tournaments.

3.1 Acyclic digraphs

For any n ≥ 3, let Acyclicn be the set of all acyclic digraphs on [n], and, for any
r ∈ [n − 1], define

Table 1 First values of
�max(n, r)

r
n 1 2 3 4 5

2 1

3 2 6

4 3 11 13

5 4 18 24 33

6 5 26 42 51 66
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�
Acyclic
max (n, r) := max

{
�(A, r) : A ∈ Acyclicn

}
,

�
Acyclic
max (n) := max

{
�(A) : A ∈ Acyclicn

}
.

Without loss of generality, we assume that any acyclic digraph A on [n] is topologically
sorted, i.e. (u, v) ∈ E(A) only if v > u.

In this section, we establish the following theorem.

Theorem 3.1 For any n ≥ 3 and r ∈ [n − 1]\{1},

�
Acyclic
max (n, r) = (n − r)(n + r − 3)

2
+ 1,

�
Acyclic
max (n) = �

Acyclic
max (n, 2) = 1

2
(n2 − 3n + 4).

First of all, we settle the case r = n − 1, for which we have a finer result.

Lemma 3.2 Let n ≥ 3 and A ∈ Acyclicn. Then, �(A, n − 1) is equal to the length of
a longest path in A. Therefore,

�
Acyclic
max (n, n − 1) = n − 1.

Proof Let v1, . . . , vl+1 be a longest path in A. Then α ∈ 〈A〉 defined by

vα :=
{

vi+1 if v = vi , i ∈ [l],
v otherwise,

has rank n − 1 and requires at least l arcs, since it moves l vertices.
Conversely, let α ∈ A be a transformation of rank n − 1, and consider a word

expressing α in A∗:

α = (u1 → v1)(u2 → v2) . . . (us → vs).

Since α has rank n − 1, we must have v2 = u1 and by induction vi = ui−1 for
2 ≤ i ≤ s. As A is acyclic, us, us−1, . . . , u1, v1 forms a path in A, so s ≤ l. ��

The following lemma shows that the formula of Theorem 3.1 is an upper bound for
�
Acyclic
max (n, r).

Lemma 3.3 For any n ≥ 3 and r ∈ [n − 1]\{1},

�
Acyclic
max (n, r) ≤ (n − r)(n + r − 3)

2
+ 1.

Proof Let A be an acyclic digraph on [n], let α ∈ 〈A〉 be a transformation of rank
r ≥ 2, and let L ⊂ V (A) be the set of terminal vertices of A. For any u, v ∈ [n],
denote the length of a longest path from u to v in A as ψA(u, v).
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Claim 3.4 �(A, α) ≤ ∑
v∈[n] ψA(v, vα).

Proof Let ω = (a1 → b1) . . . (al → bl) be a shortest word expressing α in A∗,
with l = �(A, α). Say that the arc (ai → bi ), i ≥ 2, carries v ∈ [n] if v(a1 →
b1) . . . (ai−1 → bi−1) = ai (assume that a1 → b1 only carries a1). Every arc (ai →
bi ) carries at least one vertex, for otherwise we could remove that arc form the word
ω and obtain a shorter word still expressing α. Let v ∈ [n], and denote v0 = v and
vi = v(a1 → b1) . . . (ai → bi ) (and hence vl = vα). Let us remove the repetitions
in this sequence: let j0 = 0 and for i ≥ 1, ji = min{ j : v j �= v ji−1}. Then the
sequence v = v j0 , v j1 , . . . , v jl(v)

= vα forms a path in A of length l(v), and hence
l(v) ≤ ψ(v, vα). For each v ∈ [n], there are l(v) arcs in ω carrying v, so the length
of ω satisfies

l ≤
n∑

v=1

l(v) ≤
∑
v∈[n]

ψA(v, vα).

��
Claim 3.5 If |L| ≥ 2, then

∑
v∈[n] ψA(v, vα) ≤ (n−r)(n+r−3)

2 .

Proof As |L| ≥ 2, and A is topologically sorted, we have {n, n − 1} ⊆ L , and any
α ∈ 〈A〉 fixes both n − 1 and n, i.e. ψA(v, vα) = 0 for v ∈ {n − 1, n}. For any
v ∈ [n − 2], we have

ψA(v, vα) ≤ min{n − 1, vα} − v.

Hence

∑
v∈[n]

ψA(v, vα) =
∑

v∈[n−2]
ψA(v, vα)

≤
∑

v∈[n−2]
(min{n − 1, vα} − v)

=
∑

w∈[n−2]α

(
min{n − 1, w}|wα−1|

)
− Tn−2,

where Tk = k(k+1)
2 . The summation is maximisedwhen |nα−1| = n−r and |wα−1| =

1 for n − r + 1 ≤ w ≤ n − 2, thus yielding∑
v∈[n]

ψA(v, vα) ≤ (n − 1)(n − r) + (Tn−2 − Tn−r ) − Tn−2

= (n − r)(n + r − 3)

2
.

��
Claim 3.6 If |L| = 1, then �(A, α) ≤ (n−r)(n+r−3)

2 + 1.
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Proof As A is topologically sorted, L = {n}. We use the notation from the proof of
Claim 3.4. We then have l(n) = 0. We have three cases:

Case 1 (n − 1) is fixed by α. Then, l(n − 1) = 0 and l(v) ≤ min{n − 1, vα} − v for
all v ∈ [n − 2]. By the same reasoning as in Claim 3.5, we obtain �(A, α) ≤
(n−r)(n+r−3)

2 .
Case 2 (n − 1)α = n and vα ≤ n − 1 for every v ∈ [n − 2]. Then again l(v) ≤

min{n − 1, vα} − v, for all v ∈ [n − 2], and �(A, α) ≤ (n−r)(n+r−3)
2 .

Case 3 n has at least two pre-images under α. Let ω = (a1 → b1) . . . (al → bl) be
a shortest word expressing α in A∗, and denote α0 = id and εi = (ai → bi ),
αi = ε1 . . . εi for i ∈ [l]. We partition nα−1 into two parts S and T :

S = {v ∈ nα−1 : vl(v)−1 = n − 1}, T = nα−1\S.

For all v ∈ S, if the arc carrying v to n − 1 is ε j , then (n − 1)α−1
j−1 ⊆ S

(v can only collapse with other pre-images of α). Then the arc (n − 1 → n)

occurs only once in the word ω (if it occurs multiple times, then remove all
but the last occurrence of that arc to obtain a shorter word expressing α). If
we do not count that arc, we have l ′(v) ≤ n − 1− v arcs carrying v if v ∈ S,
l(v) ≤ n − 1 − v arcs carrying v if v ∈ T , and l(v) ≤ vα − v if vα �= n.
Again, we obtain �(A, α) ≤ (n−r)(n+r−3)

2 + 1. ��
Lemma 3.3 follows by the previous claims. ��
The following lemma completes the proof of Theorem 3.1.

Lemma 3.7 For any n ≥ 3 and r ∈ [n − 1]\{1}, there exists an acyclic digraph Qn

on [n] and a transformation βr ∈ 〈Qn〉 of rank r such that

�(Qn, βr ) ≥ (n − r)(n + r − 3)

2
+ 1.

Proof Let Qn be the acyclic digraph on [n] with edge set

E(Qn) := {(u, u + 1) : u ∈ [n − 1]} ∪ {(n − 2, n)} .

For any r ∈ [n − 1]\{1}, define βr ∈ 〈Qn〉 by

vβr :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
n − r + v if v ∈ [r − 2],
n − 1 if v ∈ [n − 1]\[r − 2], n − v ≡ 0 mod 2,

n if v ∈ [n − 1]\[r − 2], n − v ≡ 1 mod 2,

n if v = n.

Let βr be expressed as a word in Q∗
n of minimum length as

βr = (a1 → b1) . . . (al → bl),

where l = �(Qn, βr ). Denote α0 := id, εi := (ai → bi ), and αi := ε1 . . . εi , for
i ∈ [l]. Say that εi carries u ∈ [n] if uαi−1 = ai and hence uαi �= uαi−1.
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Claim 3.8 For each i ∈ [l], the arc εi carries exactly one vertex.

Proof First, (a1, b1) ∈ E(Qn) and a1βr = b1βr imply that a1 = n − 1 and b1 = n.
Suppose that there is an arc ε j , j ∈ [l], that carries two vertices u < v; take j to be
minimal index with this property. We remark that v ≤ n − 2 and uα j−1 = vα j−1
imply uβr = vβr . Then w := u + 1 satisfies wβr �= uβr , so w is not carried by
ε j . If wα j−1 ≤ n − 2, then uα j−1 < wα j−1 < vα j−1 since u < w < v and
the graph induced by [n − 2] in Qn is the directed path �Pn−2; this contradicts that
uα j−1 = vα j−1. Hence wα j−1 ≥ n − 1 and vα j−1 ≥ n − 1. If vα j−1 = n or
vβr = n − 1, then ε j does not carry v. Thus, vα j−1 = n − 1 and vβr = n. Then, in
order to carry v to n − 1, we have εs = (n − 2 → n − 1) for at least one s ∈ [l], and
ε j = (n−1 → n). For s ∈ [ j−1], replace all occurrences εs = (n−2 → n−1)with
ε′
s := (n − 2 → n) and delete ε j : this yields a word in Q∗

n of length l
′ < l expressing

βr , which is a contradiction. ��
For all i ∈ [l], denote δ(i) := ∑

v∈[n] dQn (vαi , vβr ). We then have δ(l) = 0, and
by the claim, δ(i) ≥ δ(i − 1) − 1 for all i ∈ [l]. Thus l ≥ δ(0), where

δ(0) =
∑
v∈[n]

dQn (v, vβr )

=
r−2∑
v=1

(n − r) +
n−2∑

v=r−1

(n − 1 − v) + 1

= (n − r)(n + r − 3)

2
+ 1.

��

3.2 Strong tournaments

Let n ≥ 3. Recall that if T is a strong tournament on [n], then {a → b : (a, b) ∈ E(T )}
is a minimal generating set of Singn . Let Tourn denote the set of all strong tournaments
on [n]. For r ∈ [n − 1], define

�Tourmax (n, r) := max{�(T, r) : T ∈ Tourn},
�Tourmax (n) := max{�(T ) : T ∈ Tourn}.

Define analogously �Tourmin (n, r) and �Tourmin (n). The first few values of �Tourmin (n, r) and
�Tourmax (n, r), calculated with the GAP package Semigroups [7] using data from [6], are
given in Table 2. The calculation of these values has been the inspiration for the results
of this section and the conjectures of the next one.

Lemma 3.9 Let n ≥ 3 and T ∈ Tourn.

1. For any partition P of [n] into r parts, there exists an idempotent α ∈ Singn with
ker(α) = P such that �(T, α) = n − r .
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Table 2 First values of(
�Tourmin (n, r), �Tourmax (n, r)

) r
n 2 3 4 5 6

3 (6, 6)

4 (8, 8) (11, 11)

5 (6, 11) (8, 14) (10, 17)

6 (8, 13) (10, 18) (11, 21) (13, 24)

7 (8, 16) (10, 22) (11, 26) (13, 29) (15, 32)

2. For any r-subset S of [n], there exists an idempotent α ∈ Singn with Im(α) = S
such that �(T, α) = n − r .

Proof 1. Let P = {P1, . . . , Pr }. For all 1 ≤ i ≤ r , the digraph T [Pi ] induced by Pi
is a tournament, so it is connected and there exists a vertex vi reachable by any
other vertex in Pi : let α map the whole of Pi to vi . Then α, when restricted to Pi ,
is a constant map, which can be computed using |Pi |−1 arcs. Summing for i from
1 to r , we obtain that �(T, α) = n − r .

2. Without loss of generality, let S = [r ] ⊆ [n]. For every v ∈ [n], define

s(v) := min{s ∈ S : dT (s′, v) ≥ dT (s, v),∀s′ ∈ S}.

In particular, if v ∈ S, then s(v) = v. Moreover, if v = v0, v1, . . . , vd = s(v)

is a shortest path from v to s(v), with d = dT (v, s(v)), then s(vi ) = s(v) for all
0 ≤ i ≤ d. For each v ∈ [n], fix a shortest path Pv from v to s(v), and consider
the digraph D on [n] with edges

E(D) := {(a, b) : (a, b) ∈ E(Pv) for some v ∈ [n]}.

Then, D is acyclic and the set of vertices with out-degree zero in D is exactly S.
Let sort [n] so that D has reverse topological order: (a, b) ∈ E(D) only if a > b.
Note that S is fixed by this sorting. Let α be given by vα := s(v); hence, with the
above sorting

α = ©r+1
v=n(v → v1).

��
Lemma 3.10 Let n ≥ 3, T ∈ Tourn, and α := (u → v) ∈ Singn, for (u, v) /∈ E(T ).
Then

�(T, α) = 4dT (u, v) − 2.

Proof Let u = v0, v1, . . . , vd = v be a shortest path from u to v in T , where d :=
dT (u, v). As (u, v) /∈ E(T ) and T is a tournament, we must have (v, u) ∈ E(T ).
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Fig. 2 Circulant tournament κ5

1

23

4

5

By the minimality of the path, for any j + 1 < i , we have (v j , vi ) /∈ E(T ), so
(vi , v j ) ∈ E(T ). Then, the following expresses α with arcs in T ∗:

(v0 → vd) = (vd → v0)(vd−1 → vd)(vd−2 → vd−1) · · · (v1 → v2)(v0 → v1)

((v2 → v0)(v1 → v2)) ((v3 → v1)(v2 → v3))

· · · ((vd → vd−2)(vd−1 → vd))

(vd−2 → vd−1) · · · (v0 → v1).

So �(T, α) ≤ 4d −2. For the lower bound, we note that any word in T ∗ expressing
(u → v) must begin with (v → u). Then, u has to follow a walk in T towards v;
say this walk has length l ≥ d. All the vertices on the walk must be moved away (as
otherwise they would collapse with u) and have to come back to their original position
(since α fixes them all); as the shortest cycle in a tournament has length 3, this process
adds at least 3(l − 1) symbols to the word. Altogether, this yields a word of length at
least

1 + l + 3(l − 1) = 4l − 2 ≥ 4d − 2.

��

Let n = 2m + 1 ≥ 3 be odd, and let κn be the circulant tournament on [n] with
edges E(κn) := {(i, (i + j) mod n) : i ∈ [n], j ∈ [m]}. Figure 2 illustrates κ5. In
the following theorem, we use κn to provide upper and lower bounds for �Tourmin (n, r)
and �Tourmax (n, r) when n is odd.

Theorem 3.11 For any n odd, we have

n + r − 2 ≤ �Tourmin (n, r) ≤ n + 8r,

(r̂ + 1)(n − r̂) − 1 ≤ �Tourmax (n, r) ≤ 6rn + n − 10r.

where r̂ = min{r − 1, �n/2�}.
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Proof Let T ∈ Tourn and 2 ≤ r ≤ n − 1. We introduce the following notation:

[n]r := {u := (u1, . . . , ur ) : ui �= u j ,∀i, j},

�(T, r) := max

{
r∑

i=1

dT (ui , vi ) : u, v ∈ [n]r
}

.

The result follows by the next claims.

Claim 3.12 r ′(diam(T ) − r ′ + 1) + r − r ′ ≤ �(T, r) ≤ rdiam(T ), where r ′ =
min{r, �(diam(T ) + 1)/2�}.
Proof The upper bound is clear. For the lower bound, let u, v ∈ [n] be such that
dT (u, v) = diam(T ), and let u = v0, v1, . . . , vd = v be a shortest path from u to
v, where d = diam(T ). Then, dT (vi , v j ) = j − i , for all 0 ≤ i ≤ j ≤ D. If
1 ≤ r ≤ �(d + 1)/2�, consider u′ = (v0, . . . , vr−1) and v′ = (vd−r+1, . . . , vd), so
we obtain �(T, r) ≥ r(d − r + 1). If r ≥ �(d + 1)/2�, simply add vertices u′

j and v′
j

such that (u′
j , v

′
j ) /∈ T . ��

Claim 3.13 min{�(T, r) : T ∈ Tour(n)} = �(κn, r) = 2r .

Proof Let u = (u1, . . . , un) form a Hamiltonian cycle, and choose v = (un, u1, . . . ,
un−1). Then dT (ui , vi ) ≥ 2 for all i . Conversely, since diam(κn) = 2, we have
�(κn, r) = 2r . ��
Claim 3.14 n − r + �(T, r − 1) ≤ �(T, r) ≤ n + 6rdiam(T ) − 4r .

Proof For the lower bound, consider α ∈ Singn as follows. Let u = (u1, . . . , ur−1)

and v = (v1, . . . , vr−1) achieve �(T, r − 1), and let v /∈ {v1, . . . , vr−1}; define

xα =
{

vi if x = ui ,

v otherwise.

Let ω = e1 . . . el (where ei = (ai → bi )) be a shortest word expressing α, where
l := �(T, α). Recall that an arc ei carries a vertex c if ce1 . . . ei−1 = ai . By the
minimality ofω, every arc carries at least one vertex.Moreover, if c and d are carried by
ei , then cα = dα; therefore, we can label every arc ei ofω by an element c(ei ) ∈ Im(α)

if ei carries vertices eventually mapping to c(ei ). Denote the number of arcs labelled
c as l(c), we then have l = ∑

c∈Im(α) l(c). For any u ∈ V , there are at least dT (u, uα)

arcs carrying u. Therefore,

l =
∑

c∈Im(α)

l(c) ≥
r−1∑
i=1

dT (ui , vi ) +
∑
a /∈u

dT (a, v) ≥ �(T, r − 1) + n − r.

For the upper bound, we can express any α ∈ Singn of rank r in the following
fashion. By Lemma 3.9, there exists β ∈ Singn with the same kernel as α such that
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�(T, β) = n − r . Suppose that Im(α) = {v1, . . . , vr } and Im(β) = {u1, . . . , ur },
where uiβ−1 = viα

−1, for i ∈ [r ]. Let h ∈ [n]\Im(β). Define a transformation γ of
[n] by

xγ =

⎧⎪⎨
⎪⎩

vi if x = ui ,

v1 if x = h,

x otherwise.

Then α = βγ , where γ ∈ Singn , and by Theorem 1.1

�(Kn, γ ) = n − fix(γ ) + cycl(γ ) ≤ r + r

2
= 3r

2
.

ByLemma3.10, each arc associatedwith Kn maybe expressed in atmost 4diam(T )−2
arcs associated with T ; therefore,

�(T, γ ) ≤ 3r

2
(4diam(T ) − 2) = 6rdiam(T ) − 3r.

Thus,

�(T, α) ≤ �(T, β) + �(T, γ ) ≤ n + 6rdiam(T ) − 4r.

��
��

4 Conjectures and open problems

We finish the paper by proposing few conjectures and open problems.
Let πn be the tournament on [n] with edges E(πn) := {(i, (i + 1) mod n) : i ∈

[n]} ∪ {(i, j) : j + 1 < i}. Figure 3 illustrates π5.

Conjecture 4.1 For every n ≥ 3, r ∈ [n − 1], and T ∈ Tourn, we have

�(T, r) ≤ �(πn, r) = �Tourmax (n, r),

with equality if and only if T ∼= πn. Furthermore,

�(πn) = �Tourmax (n) = n2 + 3n − 6

2
,

Fig. 3 π5

1 2 3 4 5
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which is achieved for α := n (n − 1) . . . 2 n.

Tournament πn has appeared in the literature before: it is shown in [8] that πn has
the minimum number of strong subtournaments among all strong tournaments on [n].
On the other hand, it was shown in [1] that, for n odd, the circulant tournament κn has
the maximal number of strong subtournaments among all strong tournaments on [n].
Conjecture 4.2 For every n ≥ 3 odd, r ∈ [n − 1], and T ∈ Tourn, we have

�Tourmin (n, r) = �(κn, r).

Furthermore,

�Tourmin (n, 2) = n + 1 and �Tourmin (n, r) = n + r,

for all 3 ≤ r ≤ n+1
2 .

Conjecture 4.3 There exists c > 0 such that for every simple digraph D on [n],
�(D) = O(nc).

The referee of this paper noted that the automorphism groups of Kn and 〈Kn〉 =
Singn are both isomorphic to Symn and proposed the following problems.

Problem 1 Investigate connections between the automorphism groups of D and 〈D〉.
Is it possible to classify all digraphs D such that the automorphism group of D and of
〈D〉 are isomorphic?

Problem 2 Generalise the ideas of this paper to oriented matroids. Is there a natural
way to associate (not necessarily idempotent) transformations to each signed circuit
of an oriented matroid?

In a forthcoming paper, we investigate the relationship between the graph theoretic
properties of D and the semigroup properties of 〈D〉.
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