Skip to main content

Research Repository

Advanced Search

Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding

Zeraik, A.; Staykova, M.; Fontes, M.; Nemuraitė, I.; Quinlan, R.; Araújo, A.P.; DeMarco, R.

Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding Thumbnail


Authors

A. Zeraik

M. Fontes

I. Nemuraitė

A.P. Araújo

R. DeMarco



Abstract

Septins are GTP-binding proteins that are highly conserved among eukaryotes and which are usually membrane-associated. They have been linked to several critical cellular functions such as exocytosis and ciliogenesis, but little mechanistic detail is known. Their assembly into filaments and membrane binding properties are incompletely understood and that is specially so for non-human septins where such information would offer therapeutic potential. In this study we use Schistosoma mansoni, exhibiting just four septin genes, as a simpler model for characterizing the septin structure and organization. We show that the biochemical and biophysical proprieties of its SmSEPT5 and SmSEPT10 septins are consistent with their human counterparts of subgroups SEPT2 and SEPT6, respectively. By succeeding to isolate stable constructs comprising distinct domains of SmSEPT5 and SmSEPT10 we were able to infer the influence of terminal interfaces in the oligomerization and membrane binding properties. For example, both proteins tended to form oligomers interacting by the N- and C-terminal interfaces in a nucleotide independent fashion but form heterodimers via the G interface, which are nucleotide dependent. Furthermore, we report for the first time that it is the C-terminus of SmSETP10, rather than the N-terminal polybasic region found in other septins, that mediates its binding to liposomes. Upon binding we observe formation of discrete lipo-protein clusters and higher order septin structures, making our system an exciting model to study interactions of septins with biological membranes.

Citation

Zeraik, A., Staykova, M., Fontes, M., Nemuraitė, I., Quinlan, R., Araújo, A., & DeMarco, R. (2016). Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding. Biochimie, 131, 96-105. https://doi.org/10.1016/j.biochi.2016.09.014

Journal Article Type Article
Acceptance Date Sep 24, 2016
Online Publication Date Sep 26, 2016
Publication Date Dec 1, 2016
Deposit Date Oct 11, 2016
Publicly Available Date Sep 26, 2017
Journal Biochimie
Print ISSN 0300-9084
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 131
Pages 96-105
DOI https://doi.org/10.1016/j.biochi.2016.09.014
Public URL https://durham-repository.worktribe.com/output/1395630

Files






You might also like



Downloadable Citations