Dr Maximilien Gadouleau m.r.gadouleau@durham.ac.uk
Associate Professor
Reduction and Fixed Points of Boolean Networks and Linear Network Coding Solvability
Gadouleau, Maximilien; Richard, Adrien; Fanchon, Eric
Authors
Adrien Richard
Eric Fanchon
Abstract
Linear network coding transmits data through networks by letting the intermediate nodes combine the messages they receive and forward the combinations towards their destinations. The solvability problem asks whether the demands of all the destinations can be simultaneously satisfied by using linear network coding. The guessing number approach converts this problem to determining the number of fixed points of coding functions f : An ! An over a finite alphabet A (usually referred to as Boolean networks if A = f0; 1g) with a given interaction graph, that describes which local functions depend on which variables. In this paper, we generalise the so-called reduction of coding functions in order to eliminate variables. We then determine the maximum number of fixed points of a fully reduced coding function, whose interaction graph has a loop on every vertex. Since the reduction preserves the number of fixed points, we then apply these ideas and results to obtain four main results on the linear network coding solvability problem. First, we prove that non-decreasing coding functions cannot solve any more instances than routing already does. Second, we show that triangle-free undirected graphs are linearly solvable if and only if they are solvable by routing. This is the first classification result for the linear network coding solvability problem. Third, we exhibit a new class of non-linearly solvable graphs. Fourth, we determine large classes of strictly linearly solvable graphs.
Citation
Gadouleau, M., Richard, A., & Fanchon, E. (2016). Reduction and Fixed Points of Boolean Networks and Linear Network Coding Solvability. IEEE Transactions on Information Theory, 62(5), 2504-2519. https://doi.org/10.1109/tit.2016.2544344
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 5, 2016 |
Online Publication Date | Mar 21, 2016 |
Publication Date | May 1, 2016 |
Deposit Date | Mar 17, 2016 |
Publicly Available Date | Mar 18, 2016 |
Journal | IEEE Transactions on Information Theory |
Print ISSN | 0018-9448 |
Electronic ISSN | 1557-9654 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 62 |
Issue | 5 |
Pages | 2504-2519 |
DOI | https://doi.org/10.1109/tit.2016.2544344 |
Public URL | https://durham-repository.worktribe.com/output/1385949 |
Files
Accepted Journal Article
(379 Kb)
PDF
Copyright Statement
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
You might also like
Factorisation in the semiring of finite dynamical systems
(2024)
Journal Article
Graphs with minimum fractional domatic number
(2023)
Journal Article
Bent functions in the partial spread class generated by linear recurring sequences
(2022)
Journal Article
Expansive automata networks
(2020)
Journal Article
Elementary, finite and linear vN-regular cellular automata
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search