V. Kolmogorov
The complexity of general-valued CSPs
Kolmogorov, V.; Krokhin, A.; Rolínek, M.
Abstract
An instance of the valued constraint satisfaction problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P $\ne$ NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in $\{0,\infty\}$ corresponds to ordinary CSPs, where one deals only with the feasibility issue, and there is no optimization. This case is the subject of the algebraic CSP dichotomy conjecture predicting for which constraint languages CSPs are tractable (i.e., solvable in polynomial time) and for which they are NP-hard. The case when all allowed functions take only finite values corresponds to a finite-valued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Živný. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e., the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.
Citation
Kolmogorov, V., Krokhin, A., & Rolínek, M. (2017). The complexity of general-valued CSPs. SIAM Journal on Computing, 46(3), 1087-1110. https://doi.org/10.1137/16m1091836
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 8, 2017 |
Online Publication Date | Jun 29, 2017 |
Publication Date | Jul 1, 2017 |
Deposit Date | Feb 20, 2017 |
Publicly Available Date | Jun 29, 2017 |
Journal | SIAM Journal on Computing |
Print ISSN | 0097-5397 |
Electronic ISSN | 1095-7111 |
Publisher | Society for Industrial and Applied Mathematics |
Peer Reviewed | Peer Reviewed |
Volume | 46 |
Issue | 3 |
Pages | 1087-1110 |
DOI | https://doi.org/10.1137/16m1091836 |
Public URL | https://durham-repository.worktribe.com/output/1385737 |
Related Public URLs | https://arxiv.org/abs/1502.07327 |
Files
Published Journal Article
(492 Kb)
PDF
Accepted Journal Article
(382 Kb)
PDF
Copyright Statement
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
You might also like
Topology and adjunction in promise constraint satisfaction
(2023)
Journal Article
Algebraic Approach to Promise Constraint Satisfaction
(2021)
Journal Article
Robust algorithms with polynomial loss for near-unanimity CSPs
(2019)
Journal Article
Towards a characterization of constant-factor approximable Finite-Valued CSPs
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search