W.A. Hellwing
The Copernicus Complexio: a high-resolution view of the small-scale Universe
Hellwing, W.A.; Frenk, C.S.; Cautun, M.; Bose, S.; Helly, J.; Jenkins, A.; Sawala, T.; Cytowski, M.
Authors
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
M. Cautun
S. Bose
Dr John Helly j.c.helly@durham.ac.uk
Chief Experimental Officer
Professor Adrian Jenkins a.r.jenkins@durham.ac.uk
Professor
T. Sawala
M. Cytowski
Abstract
We introduce Copernicus Complexio (COCO), a high-resolution cosmological N-body simulation of structure formation in the ΛCDM model. COCO follows an approximately spherical region of radius ∼17.4 h−1 Mpc embedded in a much larger periodic cube that is followed at lower resolution. The high-resolution volume has a particle mass of 1.135 × 105 h−1 M⊙ (60 times higher than the Millennium-II simulation). COCO gives the dark matter halo mass function over eight orders of magnitude in halo mass; it forms ∼60 haloes of galactic size, each resolved with about 10 million particles. We confirm the power-law character of the subhalo mass function, , down to a reduced subhalo mass Msub/M200 ≡ μ = 10−6, with a best-fitting power-law index, s = 0.94, for hosts of mass 〈M200〉 = 1012 h−1 M⊙. The concentration–mass relation of COCO haloes deviates from a single power law for masses M200 < afew × 108 h−1 M⊙, where it flattens, in agreement with results by Sanchez-Conde et al. The host mass invariance of the reduced maximum circular velocity function of subhaloes, ν ≡ Vmax/V200, hinted at in previous simulations, is clearly demonstrated over five orders of magnitude in host mass. Similarly, we find that the average, normalized radial distribution of subhaloes is approximately universal (i.e. independent of subhalo mass), as previously suggested by the Aquarius simulations of individual haloes. Finally, we find that at fixed physical subhalo size, subhaloes in lower mass hosts typically have lower central densities than those in higher mass hosts.
Citation
Hellwing, W., Frenk, C., Cautun, M., Bose, S., Helly, J., Jenkins, A., …Cytowski, M. (2016). The Copernicus Complexio: a high-resolution view of the small-scale Universe. Monthly Notices of the Royal Astronomical Society, 457(4), 3492-3509. https://doi.org/10.1093/mnras/stw214
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 23, 2016 |
Online Publication Date | Feb 8, 2016 |
Publication Date | Apr 21, 2016 |
Deposit Date | Apr 5, 2016 |
Publicly Available Date | Apr 7, 2016 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 457 |
Issue | 4 |
Pages | 3492-3509 |
DOI | https://doi.org/10.1093/mnras/stw214 |
Public URL | https://durham-repository.worktribe.com/output/1385041 |
Files
Published Journal Article
(3.5 Mb)
PDF
Copyright Statement
This article has been published in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
The impact of the Large Magellanic Cloud on dark matter direct detection signals
(2023)
Journal Article
Cosmic Ballet III: Halo spin evolution in the cosmic web
(2021)
Journal Article
The twisted dark matter halo of the Milky Way
(2020)
Journal Article
The Milky Way total mass profile as inferred from Gaia DR2
(2020)
Journal Article
Evolution of galactic planes of satellites in the eagle simulation
(2019)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search