L. Demonet
SL(2)-tilings do not exist in higher dimensions (mostly)
Demonet, L.; Plamondon, P.-G.; Rupel, D.; Stella, S.; Tumarkin, P.
Authors
Abstract
We define a family of generalizations of SL2-tilings to higher dimensions called ϵ-SL2-tilings. We show that, in each dimension 3 or greater, ϵ-SL2-tilings exist only for certain choices of ϵ. In the case that they exist, we show that they are essentially unique and have a concrete description in terms of odd Fibonacci numbers.
Citation
Demonet, L., Plamondon, P., Rupel, D., Stella, S., & Tumarkin, P. (2018). SL(2)-tilings do not exist in higher dimensions (mostly). Séminaire lotharingien de combinatoire, 76, Article B76d
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 31, 2017 |
Online Publication Date | Sep 12, 2018 |
Publication Date | Sep 12, 2018 |
Deposit Date | Apr 12, 2016 |
Publicly Available Date | Apr 5, 2017 |
Journal | Séminaire lotharingien de combinatoire |
Publisher | Fakultät für Mathematik, Universität Wien |
Peer Reviewed | Peer Reviewed |
Volume | 76 |
Article Number | B76d |
Public URL | https://durham-repository.worktribe.com/output/1384500 |
Publisher URL | https://www.mat.univie.ac.at/~slc/wpapers/s76stella.html |
Related Public URLs | arxiv.org/abs/1604.02491 |
Files
Accepted Journal Article
(120 Kb)
PDF
You might also like
3D Farey Graph, Lambda Lengths and SL₂-Tilings
(2025)
Journal Article
Polytopal realizations of non-crystallographic associahedra
(2025)
Journal Article
Categorifications of non-integer quivers: types H_4, H_3 and I_2(2n + 1)
(2024)
Journal Article
Cluster algebras of finite mutation type with coefficients
(2024)
Journal Article
Categorifications of non-integer quivers: types I_2(2n)
(2023)
Preprint / Working Paper