Jens M. Turowski
A probabilistic framework for the cover effect in bedrock erosion
Turowski, Jens M.; Hodge, Rebecca
Abstract
The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and long-term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover effect that can be applied to field, laboratory, and modelling data and thus allows the comparison of results from different sources. The framework describes the formation of sediment cover as a function of the probability of sediment being deposited on already alluviated areas of the bed. We define benchmark cases and suggest physical interpretations of deviations from these benchmarks. Furthermore, we develop a reach-scale model for sediment transfer in a bedrock channel and use it to clarify the relations between the sediment mass residing on the bed, the exposed bedrock fraction, and the transport stage. We derive system timescales and investigate cover response to cyclic perturbations. The model predicts that bedrock channels can achieve grade in steady state by adjusting bed cover. Thus, bedrock channels have at least two characteristic timescales of response. Over short timescales, the degree of bed cover is adjusted such that the supplied sediment load can just be transported, while over long timescales, channel morphology evolves such that the bedrock incision rate matches the tectonic uplift or base-level lowering rate.
Citation
Turowski, J. M., & Hodge, R. (2017). A probabilistic framework for the cover effect in bedrock erosion. Earth Surface Dynamics, 5(2), 311-330. https://doi.org/10.5194/esurf-5-311-2017
Journal Article Type | Article |
---|---|
Acceptance Date | May 19, 2017 |
Online Publication Date | Jun 20, 2017 |
Publication Date | Jun 20, 2017 |
Deposit Date | Jul 7, 2017 |
Publicly Available Date | Jul 7, 2017 |
Journal | Earth Surface Dynamics |
Print ISSN | 2196-6311 |
Electronic ISSN | 2196-632X |
Publisher | Copernicus Publications |
Peer Reviewed | Peer Reviewed |
Volume | 5 |
Issue | 2 |
Pages | 311-330 |
DOI | https://doi.org/10.5194/esurf-5-311-2017 |
Public URL | https://durham-repository.worktribe.com/output/1375053 |
Files
Published Journal Article
(10.8 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
You might also like
The Influence of In‐Channel Obstacles on River Sound
(2022)
Journal Article
Babbling brook to thunderous torrent: Using sound to monitor river stage
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search