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Abstract. The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and
long-term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover effect
that can be applied to field, laboratory, and modelling data and thus allows the comparison of results from
different sources. The framework describes the formation of sediment cover as a function of the probability
of sediment being deposited on already alluviated areas of the bed. We define benchmark cases and suggest
physical interpretations of deviations from these benchmarks. Furthermore, we develop a reach-scale model for
sediment transfer in a bedrock channel and use it to clarify the relations between the sediment mass residing on
the bed, the exposed bedrock fraction, and the transport stage. We derive system timescales and investigate cover
response to cyclic perturbations. The model predicts that bedrock channels can achieve grade in steady state by
adjusting bed cover. Thus, bedrock channels have at least two characteristic timescales of response. Over short
timescales, the degree of bed cover is adjusted such that the supplied sediment load can just be transported, while
over long timescales, channel morphology evolves such that the bedrock incision rate matches the tectonic uplift
or base-level lowering rate.

1 Introduction

Bedrock channels are shaped by erosion caused by count-
less impacts of the sediment particles they carry along their
bed (Beer and Turowski, 2015; Cook et al., 2013; Sklar
and Dietrich, 2004). There are feedbacks between the evolv-
ing channel morphology, the bedload transport, and the hy-
draulics (e.g. Finnegan et al., 2007; Johnson and Whipple,
2007; Wohl and Ikeda, 1997). Impacting bedload particles
driven forward by the fluid forces erode and therefore shape
the bedrock bed. In turn, the morphology of the channel de-
termines the pathways of both sediment and water, and the
forces which the latter exerts on the former, and thus sets
the stage for the entrainment and deposition of the sediment
(Hodge and Hoey, 2016). Sediment particles play a key role
in this erosion process; they provide the tools for erosion and
also determine where bedrock is exposed such that it can be

worn away by impacting particles (Gilbert, 1877; Sklar and
Dietrich, 2004).

The importance of the cover effect – that a stationary layer
of gravel can shield the bedrock from bedload impacts – has
by now been firmly established in a number of field and labo-
ratory studies (e.g. Chatanantavet and Parker, 2008; Finnegan
et al., 2007; Hobley et al., 2011; Johnson and Whipple, 2007;
Turowski and Rickenmann, 2009; Turowski et al., 2008; Yan-
ites et al., 2011). Sediment cover is generally modelled with
generic relationships that predict the decrease in the fraction
of exposed bedrock area A∗ with the increase in the rela-
tive sediment supply Q∗s , usually defined as the ratio of sedi-
ment supply to transport capacity. Based on laboratory exper-
iments and simple modelling, Turowski and Bloem (2016)
argued that the focus on covered area is generally justified on
the reach scale and that the erosion of bedrock under a thin
sediment cover can be neglected. However, the behaviour of
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sediment cover under flood conditions is currently unknown
and the assumption that the cover distribution at low flow is
representative of that at high flow may not be justified (cf.
Beer et al., 2016; Turowski et al., 2008).

The most commonly used function to describe the cover
effect is the linear decline (Sklar and Dietrich, 1998), which
is the simplest function connecting the steady-state endmem-
bers of an empty bed when relative sediment supply Q∗s = 0
and full cover when Q∗s = 1:

A∗ =

{
1−Q∗s for Q∗s < 1

0 otherwise. (1)

In contrast, the exponential cover function arises under the
assumption that particle deposition is equally likely for each
part of the bed, whether it is covered or not (Turowski et al.,
2007).

A∗ =

{
e−Q

∗
s for Q∗s < 1

0 otherwise.
(2)

Here, e is the base of the natural logarithm.
Hodge and Hoey (2012) obtained both the linear and the

exponential functions using a cellular automaton (CA) model
that modulated grain entrainment probabilities by the number
of neighbouring grains. However, consistent with laboratory
flume data, the same model also produced other behaviours
under different parameterizations. One alternative behaviour
is runaway alluviation, which was attributed by Chatanan-
tavet and Parker (2008) to the differing roughness of bedrock
and alluvial patches. Due to a decrease in flow velocity, an
increase in surface roughness, and differing grain geometry,
the likelihood of deposition is higher over bed sections cov-
ered by alluvium compared to smooth, bare bedrock sections
(Hodge et al., 2011). This can lead to rapid alluviation of
the entire bed once a minimum fraction has been covered.
The relationship between sediment flux and cover is also af-
fected by the bedrock morphology; flume experiments have
demonstrated that on a non-planar bed, the location of sedi-
ment cover is driven by bed topography and hydraulics (e.g.
Finnegan et al., 2007; Inoue et al., 2014). Johnson and Whip-
ple (2007) observed that stable patches of alluvium tend to
form in topographic lows such as potholes and at the bottom
of slot canyons, whereas Hodge and Hoey (2016) found that
local flow velocity also controls sediment cover location.

The relationship between roughness, bed cover, and in-
cision was explored in a number of recent numerical mod-
elling studies. Nelson and Seminara (2011, 2012) were one
of the first to model the impact that the differing roughness
of bedrock and alluvial areas has on sediment patch stabil-
ity. Zhang et al. (2015) formulated a macro-roughness cover
model, in which sediment cover is related to the ratio of
sediment thickness to bedrock macro-roughness. Aubert et
al. (2016) directly simulated the dynamics of particles in
a turbulent flow and obtained both linear and exponential
cover functions. Johnson (2014) linked sediment transport

and cover to bed roughness in a reach-scale model. Using
a model formulation similar to that of Nelson and Semi-
nara (2011), Inoue et al. (2016) reproduced bar formation and
sediment dynamics in bedrock channels. All of these studies
used slightly different approaches and mathematical formu-
lations to describe alluvial cover, making a direct comparison
difficult.

Over timescales including multiple floods, the variabil-
ity in sediment supply is also important (e.g. Turowski et
al., 2013). Lague (2010) used a model formulation in which
cover was written as a function of the average sediment depth
to upscale daily incision processes to long timescales. He
found that over the long term, cover dynamics are largely in-
dependent of the precise formulation on the process scale and
are rather controlled by the magnitude–frequency distribu-
tion of discharge and sediment supply. Using the CA model
of Hodge and Hoey (2012), Hodge (2017) found that, when
sediment supply was very variable (alternating large pulses
with no sediment supply), the amount of sediment cover was
primarily determined by the recent supply history, rather than
by the relationships identified under constant sediment sup-
ply.

So far, it has been somewhat difficult to compare and dis-
cuss the different cover functions obtained from theoretical
considerations, numerical models, and experiments, since a
unifying framework and clear benchmark cases have been
missing. Here, we propose such a framework and develop
type cases linked to physical considerations of the flow hy-
draulics and sediment erosion and deposition. We show how
this framework can be applied to data from a published
model (Hodge and Hoey, 2012). Furthermore, we develop
a reach-scale erosion–deposition model that allows the dy-
namic modelling of cover and prediction of steady states.
Thus, we clarify the relationship between cover, deposited
mass, and relative sediment supply. As part of this model
framework, we investigate the response time of a channel to
a change in sediment input, which we illustrate using data
from a natural channel.

2 A probabilistic framework

2.1 Development

Here we build on the arguments put forward by Turowski
et al. (2007) and Turowski (2009). Consider a bedrock bed
on which sediment particles are distributed. We can view the
deposition of each particle as a random process, and each
area element on the bed surface can be assigned a probability
for the deposition of a particle. When assuming that a given
number of particles are distributed on the bed, the mean be-
haviour of the exposed area A∗ can be calculated from the
following equation (Fig. 1):

dA∗ =−P
(
A∗,M∗s , . . .

)
dM∗s . (3)
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Figure 1. Cartoon illustration of a bed partially covered by sedi-
ment. For purpose of illustration, the bed is divided into a square
raster, with each pixel of the size of a single grain. For a given
number of particles in the area of the bed of interest, the exposed
area fraction of the bed is dependent on the distribution of particles.
Grains that sit on top of other grains do not contribute to cover. The
probability that a new grain is deposited on uncovered bed is given
by P (Eq. 3).

P is the probability that a given particle is deposited on the
exposed part of the bed, which here is a function of the frac-
tion of exposed area (A∗) and a dimensionless mass of par-
ticles on the bed per area (M∗s , explained below), but which
can be expected to also be a function of the relative sedi-
ment supply, the bed topography and roughness, the particle
size, the local hydraulics, or other control variables. M∗s is a
dimensionless mass equal to the total mass of the particles
residing on the bed per area, which is suitably normalized.
A suitable mass for normalization is the minimum mass re-
quired to cover a unit area, M0, as will become clear later.
The minus sign is introduced because the fraction of the ex-
posed area reduces as M∗s increases. As most previous rela-
tionships are expressed in terms of relative sediment supply
Q∗s , the relation of M∗s to Q∗s will be discussed later.

We can make some general statements about P . First, P is
defined for the range 0≤ A∗ ≤ 1 and undefined elsewhere.
Second, P takes values between 0 and 1 for 0≤ A∗ ≤ 1.
Third, P (A∗ = 0)= 0 and P (A∗ = 1)= 1. Note that P is not
a distribution function and therefore does not need to inte-
grate to 1. Neither does it have to be continuous and differ-
entiable everywhere.

For purpose of illustration, we will next discuss two simple
forms of the probability function P that lead to the linear and
exponential forms of the cover effect. First, consider the case
that all particles are always deposited on exposed bedrock. In
this case, formally, to keep with the conditions stated above,
we define P = 1 for 0<A∗ ≤ 1 and P = 0 forA∗ = 0. Thus,
we can write

dA∗ =−dM∗s for 0<A∗ ≤ 1
dA∗ = 0 for A∗ = 0 . (4)

Integrating, we obtain

A∗ =−M∗s +C, (5)

where the constant of integration C is found to equal 1
by using the condition A∗(M∗s = 0)= 1. Thus, we obtain

a linear cover function. Note that the linear cover function
gives a theoretical lower bound for the amount of cover: it
arises when all available sediment always falls on uncov-
ered ground, and thus no additional sediment is available that
could facilitate quicker alluviation. In essence, this is a mass
conservation argument. Now it is obvious whyM0 is a conve-
nient way to normalize: in plots of A∗ againstM∗s , we obtain
a triangular region bounded by the points [0,1], [0,0], and
[1,0] in which the cover function cannot exist (Fig. 2).

Similarly to above, if we set P to a constant value, k,
smaller than 1 for 0<A∗ ≤ 1, we obtain

A∗ = 1− kM∗s . (6)

It is clear that the assumption of P = k is physically unre-
alistic because it implies that the probability of deposition on
exposed ground is independent of the amount of uncovered
bedrock. Especially when A∗ is close to 0, it seems unlikely
that, say, 90 % of the sediment always falls on uncovered
ground. A more realistic assumption is that the probability
of deposition on uncovered ground is independent of loca-
tion and other possible controls but is equal to the fraction
of exposed area; i.e. P = A∗. In a probabilistic sense, this is
also the simplest plausible assumption one can make. Then

dA∗ =−A∗dM∗s , (7)

giving upon integration

A∗ = e−M
∗
s . (8)

The argument used here to obtain the exponential cover
effect in Eq. (8) essentially corresponds to the one given by
Turowski et al. (2007). Since this case presents the simplest
plausible assumption, we will use it as a benchmark case, to
which we will compare other possible functional forms of P .

In principle, the probability function P can be varied to ac-
count for various processes that make deposition more likely
either on already covered ground by decreasing P for the ap-
propriate range ofA∗ from the benchmark case P = A∗ or on
uncovered ground by increasing P from the benchmark case
P = A∗. As has been identified previously (Chatanantavet
and Parker, 2008; Hodge and Hoey 2012), roughness feed-
backs to the flow can cause either case, depending on whether
subsequent deposition is adjacent to or on top of existing sed-
iment patches. In the former case, particles residing on an
otherwise bare bedrock bed act as obstacles for moving par-
ticles and create a low-velocity wake zone in the downstream
direction. In addition, particles residing on other single parti-
cles are unstable and stacks of particles are unlikely. Hence,
newly arriving particles tend to deposit either upstream or
downstream of stationary particles and the probability is gen-
erally higher for deposition on uncovered ground than in the
benchmark case. In the latter case, larger patches of station-
ary particles increase the surface roughness of the bed, thus
decreasing the local flow velocity and stresses, making depo-
sition on the patch more likely. In this way, the probability of
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deposition on already covered bed is increased in comparison
to the benchmark case.

A simple functional form that can be used to take into ac-
count either one of these two effects is a power law depen-
dence of P on A∗, taking the form P = A∗

α
(Fig. 2a). Then,

the cover function becomes (Fig. 2b)

A∗ =
(
1− (1−α)M∗s

) 1
1−α . (9)

Here, the probability of deposition on uncovered ground is
increased in comparison to the benchmark exponential case
if 0< α < 1 and decreased if α > 1.

A convenient and flexible way to parameterize P (A∗) in
general is the cumulative version of the Beta distribution,
given by

P
(
A∗
)
= B

(
A∗;a,b

)
. (10)

Here, B(A∗;a,b) is the regularized incomplete Beta func-
tion with two shape parameters a and b, which are both real
positive numbers, defined by

B
(
A∗;a,b

)
=

∫ A∗
0 ya−1(1− y)b−1dy∫ 1
0 y

a−1(1− y)b−1dy
. (11)

Here, y is a dummy variable. With suitable choices for
a and b, cover functions resembling the exponential (a =
b =1), the linear form (a = 0, b > 0), and the power law form
(a� b or a� b) can be retrieved. Wavy functions are also
a possibility (Fig. 3); thus, both of the roughness effects de-
scribed above can be modelled in a single scenario. Unfortu-
nately, the integral necessary to obtain A∗(M∗s ) does not give
a closed-form analytical solution and needs to be computed
numerically.

In principle, a suitable function P could also be defined
to account for the influence of bed topography on sediment
deposition. Such a function is likely dependent on the details
of the particular bed, hydraulics, and sediment flow paths in
a complex way and needs to be mapped out experimentally.

2.2 Example of application using model data

To illustrate how the framework can be used, we apply it
to data obtained from the CA model developed by Hodge
and Hoey (2012). The CA model reproduces the transport of
individual sediment grains over a smooth bedrock surface.
In each time step, the probability of a grain being entrained
is a function of the number of neighbouring grains. If five
or more of the eight neighbouring cells contain grains, then
the grain has a probability of entrainment pc; otherwise it
has the probability pi. In most model runs pc was set to a
value less than that of pi, thus accounting for the impact of
sediment cover in decreasing local shear stress (through in-
creased flow resistance) and increasing the critical entrain-
ment shear stress for grains (via lower grain exposure and

increased pivot angles). Thus, in the model, grain scale dy-
namics of entrainment are varied by adjusting the values of
pi and pc. This has a direct effect on the reach-scale distri-
bution of cover, which is captured by our P function (Eq. 3).

The model is run with a domain that is 100 cells wide
by 1000 cells long, with each cell having the same area as
a grain. Up to four grains can potentially be entrained from
each cell in a time step, limiting the maximum sediment flux.
In each time step random numbers and the probabilities are
used to select the grains that are entrained, which are then
moved a step length of 10 cells downstream and deposited.
Model results are insensitive to the step length. A fixed num-
ber of grains are also supplied to the upstream end of the
model domain. A smoothing algorithm is applied to prevent
unrealistically tall piles of grains developing in cells if there
are far fewer grains in adjacent cells. After around 500 time
steps the model typically reaches a steady-state condition in
which the number of grains supplied to and leaving the model
domain are equal. Sediment cover is measured in a down-
stream area of the model domain and is defined as grains that
are not entrained in a given time step. Consequently grains
that are deposited in one time step and entrained in the fol-
lowing one do not contribute to the sediment cover, and so
the model implicitly incorporates the effect of local sediment
cover on grain deposition.

Model runs were completed with six different combina-
tions of pi and pc: 0.95/0.95, 0.95/0.75, 0.75/0.10, 0.75/0.30,
0.30/0.30, and 0.95/0.05. These combinations were selected
to cover the range of relationships between relative sediment
supply Q∗s and the exposed bed fraction A∗ observed by
Hodge and Hoey (2012). For each pair of pi and pc, model
runs were completed with at least 20 different values of Q∗s
in order to quantify the model behaviour.

Cover bed fraction and total mass on the bed produced by
the model were converted using Eq. (3) into the new proba-
bilistic framework (Fig. 4). The derivative was approximated
by simple linear finite differences, which, in the case of run-
away alluviation, resulted in a non-continuous curve due to
large gradients. The exponential benchmark (Eq. 8) is also
shown for comparison. The different model parameteriza-
tions produce results in which the probability of deposition
on bedrock is both more and less likely than in the baseline
case, with some runs showing both behaviours. Cases where
the probability is more than the baseline case (i.e. grains
are more likely to fall on uncovered areas) are associated
with runs in which grains in clusters are relatively immo-
bile. These runs are likely to be particularly affected by the
smoothing algorithm that acts to move sediment from allu-
viated to bedrock areas. All model parameterizations predict
greater bed exposure for a given normalized mass than is pre-
dicted by a linear cover relationship (Fig. 3b). Runs with rel-
atively more immobile cluster grains have a lower exposed
fraction for the same normalized mass. Runs with low values
of pi and pc seem to lead to behaviour in which cover is more
likely than in the exponential benchmark, while for high val-
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Figure 2. (a) Various examples for the probability function P as a function of bedrock exposure A∗. (b) Corresponding analytical solutions
for the cover function between A∗ and dimensionless sediment mass M∗s using Eqs. (6), (7), and (9). Grey shading depicts the area where
the cover function cannot run due to conservation of mass.
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Figure 3. Examples for the use of the regularized incomplete Beta function (Eq. 11) to parameterize P , using various values for the shape
parameters a and b. The choice a = b = 1 gives a dependence that is equivalent to the exponential cover function. Grey shading depicts the
area where the cover function cannot run due to conservation of mass.

ues, it is less likely. However, these are complex interactions
and it is difficult to generalize the model behaviour.

3 Cover development in time and space

3.1 Model derivation

Previous descriptions of the cover effect relate the exposed
fraction of the bed to the relative sediment supply Q∗s (see
Eqs. 1 and 2). In this section, we derive a model to clarify the

relationship between the exposed fraction, Q∗s , and Ms and
put it on a sound physical basis. To this end, the probabilis-
tic formulation introduced previously is extended to allow
the calculation of the temporal and spatial evolution of sed-
iment cover in a stream. Here, we will derive the equations
for the one-dimensional case (linear flume), but extensions
to higher dimensions are possible in principle. The deriva-
tion is inspired by the erosion–deposition framework (e.g.
Charru et al., 2004), with some necessary adaptions to make
it suitable for channels with partial sediment cover (e.g. Tur-
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owski, 2009). In our system, we consider two separate mass
reservoirs within a control volume. The first reservoir con-
tains all particles in motion, the total mass per bed area of
which is denoted byMm, while the second reservoir contains
all particles that are stationary on the bed, the total mass per
bed area of which is denoted byMs. The reservoirs exchange
mass by entrainment and deposition; i.e. when a stationary
particle is entrained it becomes mobile and when a mobile
particle is deposited, it becomes stationary. In addition to
Eq. (3), we then need three further equations: one to con-
nect the rate of change in mobile mass to the sediment flux
in the flume and one each to describe mass conservation in
the two reservoirs. Instead of the common approach tracking
the height of the sediment over a reference level, as is done
in the classic mass conservation in fluvial systems, the Exner
equation (e.g. Paola and Voller, 2005), we use the total sed-
iment mass on the bed as a variable. Mobile sediment mass
is supplied from upstream (1in), leaves in the downstream
direction (1out), and can be exchanged between the station-
ary and the mobile mass reservoirs by entrainment (Etot) and
deposition (Dtot) (Fig. 5). The latter two parameters describe
the exchange of particles between reservoirs; in the single-
reservoir Exner equation these terms are not needed. It is
clear that for the problem at hand the choice of total mass
or volume as a variable to track the amount of sediment in
the reach of interest is preferable to the height of the alluvial
cover, since necessarily, when cover is patchy, the height of
the alluvium varies across the bed.

The difference form of the mass balance for the mobile
sediment is then given by (cf. Fig. 5)

1Mm = (1in−1out+Etot−Dtot)1t. (12)

Here,1Mm is the change in mobile sediment mass and1t
is a change in time. As the length of a time step is reduced to
0, a continuous version of Eq. (12) is obtained, which reads

∂Mm

∂t
=−

∂qs

∂x
+E−D. (13)

Here, x is the coordinate in the streamwise direction, t the
time, and qs the sediment mass transport rate per unit width,

 

Stationary mass Ms

Mobile mass Mm

Etot

Dtot

∆in ∆out

Figure 5. Sediment dynamics at the bed are modelled by two reser-
voirs for stationary and mobile mass, which can exchange material
by entrainment (Etot) and deposition (Dtot). Sediment mass can be
supplied from upstream (1in) and can leave in the downstream di-
rection (1out).

while E is the mass entrainment rate per bed area and D is
the mass deposition rate per bed area. Similarly, in the mass
balance for the stationary mass reservoir, the rate of change
of the stationary sediment mass Ms in time is the difference
of the deposition rate D and the entrainment rate E:

∂Ms

∂t
=D−E. (14)

It is useful to work with dimensionless variables by defin-
ing t∗ = t/T and x∗ = x/L, where T and L are suitable
time and length scales, respectively. The dimensionless mo-
bile mass per bed area M∗m is equal to Mm/M0, and Eq. (13)
becomes
∂M∗m
∂t∗
=−

∂q∗s
∂x∗
+E∗−D∗. (15)

Here,

q∗s =
T

LM0
qs. (16)

The dimensionless entrainment and deposition rates, E∗

andD∗, are equal to T E/M0 and TD/M0, respectively. Sim-
ilarly, the balance for the stationary mass (Eq. 14) can be
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written as

∂M∗s
∂t∗
=D∗−E∗. (17)

We also need sediment entrainment and deposition func-
tions. The entrainment rate needs to be modulated by the
availability of sediment on the bed. If M∗s is equal to 0, no
material can be entrained. A plausible assumption is that the
maximal entrainment rate, E∗max, is equal to the transport ca-
pacity.

E∗max = q
∗
t (18)

Here, q∗t is the dimensionless mass transport capacity,
which is related to the transport capacity per unit width qt
by a relation similar to Eq. (16). To first order, the rate of
change in entrainment rate, dE, is proportional to the differ-
ence of Emax and E and to the rate of change in mass on the
bed.

dE∗ =
(
E∗max−E

∗
)

dM∗s =
(
q∗t −E

∗
)

dM∗s (19)

Integrating, we obtain

E∗ = E∗max

(
1− e−M

∗
s
)
=

(
1− e−M

∗
s
)
q∗t . (20)

Here, we used the condition E∗(M∗s = 0)= 0 to fix the in-
tegration constant to E∗max. As required, Eq. (20) approaches
E∗max as M∗s goes to infinity and is equal to 0 when M∗s is
equal to 0. Using a similar line of argument and by assuming
the maximum deposition rate to be equal to q∗s , we arrive at
an equation for the deposition rate D∗.

D∗ =
(

1− e−M
∗
m
)
q∗s (21)

When M∗m is small, then the amount that can be deposited
is limited by M∗m. If Mm∗ is large, then deposition is lim-
ited by sediment supply. Substituting Eqs. (20) and (21) into
Eq. (17), we obtain

∂M∗s (x∗, t∗)
∂t∗

=D∗−E∗ = (22)(
1− e−M

∗
m(x∗,t∗)

)
q∗s
(
x∗, t∗

)
−

(
1− e−M

∗
s (x∗,t∗)

)
q∗t
(
x∗, t∗

)
.

Note that q∗s /q
∗
t =Q

∗
s . The equation for the mobile mass

(Eq. 14) becomes

∂M∗m (x∗, t∗)
∂t∗

= −
∂q∗s
∂x∗
−

(
1− e−M

∗
m(x∗,t∗)

)
q∗s
(
x∗, t∗

)
(23)

+

(
1− e−M

∗
s (x∗,t∗)

)
q∗t
(
x∗, t∗

)
.

Finally, the sediment transport rate needs to be propor-
tional to the mobile sediment mass times the downstream
sediment speed U , and we can write

q∗s
(
x∗, t∗

)
= U∗

(
x∗, t∗

)
M∗m

(
x∗, t∗

)
. (24)

Here

U∗ =
T

L
U. (25)

After incorporating the original equation between A∗ and
M∗s (Eq. 3), the system of four differential Eqs. (3), (22),
(23) and (24) contains four unknowns: the downstream gradi-
ent in the sediment transport rate ∂q∗s /∂x

∗, the exposed frac-
tion of the bed A∗, the non-dimensional stationary massM∗s ,
and the non-dimensional mobile mass M∗m, while the non-
dimensional transport capacity q∗t and the non-dimensional
downstream sediment speed U∗ are input variables and P is
a externally specified function. In addition, sediment input
q∗s needs to be specified as an upstream boundary condition
and initial values for the mobile massM∗m, and the stationary
mass M∗s need to be specified everywhere.

3.2 Time-independent solution

In this chapter, we discuss the steady solution to the system
of equations and thus clarify the relationship between cover,
stationary sediment mass, sediment supply, and transport ca-
pacity. Setting the time derivatives to 0, we obtain a time-
independent solution, which links the exposed area directly
to the ratio of sediment transport rate to transport capacity.
From Eq. (23) it follows that in this case, the entrainment
rate is equal to the deposition rate, and we obtain(

1− e−M
∗
m
)
q∗s =

(
1− e−M

∗
s
)
q∗t . (26)

Here, the bar over the variables denotes their steady-state
value. Substituting Eq. (24) to eliminate M∗m and solving for
M∗s gives

M∗s =− ln
{

1−
(

1− e−q
∗
s /U

∗
) q∗s
q∗t

}
(27)

=− ln
{

1−
(

1− e−
q∗t
U∗
Q∗s

)
Q∗s

}
.

Note that we assume here that sediment cover is only de-
pendent on the stationary sediment mass on the bed, and we
thus neglect grain–grain interactions known as the dynamic
cover (Turowski et al., 2007). In analogy to Eq. (24), we can
write

q∗t = U
∗M∗0 . (28)

Here, M∗0 is a characteristic dimensionless mass that de-
pends on hydraulics and therefore implicitly on transport
capacity (which should not be confused with the minimum
mass necessary to fully cover the bed M0). When sediment
transport rate equals transport capacity, then M∗0 is equal to
the mobile mass of sediment normalized by the reference
massM0. It can be viewed as a proxy for the transport capac-
ity and is a convenient parameter to simplify the equations.
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The mobile mass can then, in general, be written as follows
(cf. Turowski et al., 2007), remembering that the relative sed-
iment supply Q∗s = 1 when supply is equal to capacity:

M∗m =M
∗

0Q
∗
s . (29)

If we use the exponential cover function (Eq. 8) with
Eqs. (27), (28), and (29), we obtain

A∗ = 1−
(

1− e−q
∗
s /U

∗
) q∗s
q∗t
= 1−

(
1− e−

q∗t
U∗
Q∗s

)
Q∗s

= 1−
(

1− e−M
∗

0Q
∗
s
)
Q∗s . (30)

Similarly, equations can be found for the other analytical
solutions of the cover function. For the linear case (Eq. 6),
we obtain

A∗ = 1+ ln
{

1−
(

1− e−M
∗

0Q
∗
s
)
Q∗s

}
. (31)

For the power law case (Eq. 9), we obtain

A∗ =
[
1+ (1−α) ln

{
1−

(
1− e−M

∗

0Q
∗
s
)
Q∗s

}] 1
1−α
. (32)

The exponential cover function essentially leads to a com-
bined linear and exponential relation betweenA∗ andQ∗s . In-
stead of a linear decline as in the original linear cover model
(Eq. 1) or a concave-up relationship as in the original expo-
nential model (Eq. 2), the function is convex-up for all solu-
tions (Fig. 6). Adjusting M∗0 shifts the lines: decreasing M∗0
leads to a delayed onset of cover and vice versa. The former
result arises because a lower M∗0 means that the sediment
flux is conveyed through a smaller mass moving at a higher
velocity. The original linear cover function (Eq. 1) can be re-
covered from the exponential model with a high value ofM∗0 ,
since the exponential term quickly becomes negligible with
increasing Q∗s and the linear term dominates (Fig. 6c). Note
that for the linear (Eq. 5) and the power law cases (Eq. 9),
high values of M∗0 may give A∗ = 0 for Q∗s < 1 (Fig. 6b, d),
which is consistent with the concept of runaway alluviation.
Using the Beta distribution to describe P , a numerical so-
lution is necessary, but a wide range of steady-state cover
functions can be obtained (Fig. 7). By varying the value of
M∗0 , an even wider range of behaviours can be obtained.

The previous analysis shows that steady-state cover is con-
trolled by the characteristic dimensionless mass M∗0 , which
is equal to the ratio of dimensionless transport capacity and
particle speed (Eq. 28). In the following, we relate M∗0 to
hydraulic variables and argue that it is, in general, not a con-
stant. Converting M∗0 to dimensional variables, we can write

M∗0 =
q∗t
U∗
=

qt

M0U
. (33)

The minimum mass necessary to completely cover the bed
per unit area, M0, can be estimated assuming a single layer

of closely packed spherical grains residing on the bed (cf.
Turowski, 2009), giving

M0 =
πρsD50

3
√

3
. (34)

Here, ρs is the sediment density and D50 is the median
grain size. We use equations derived by Fernandez-Luque
and van Beek (1976) from flume experiments that describe
transport capacity and particle speed as a function of bed
shear stress (see also Lajeunesse et al., 2010, and Meyer-
Peter and Mueller, 1948, for similar equations):

qt = 5.7
ρsρ

(ρs− ρ)g

(
τ

ρ
−
τc

ρ

)3/2

, (35)

U = 11.5

((
τ

ρ

)1/2

− 0.7
(
τc

ρ

)1/2
)
. (36)

Here, τc is the critical bed shear stress for the onset of
bedload motion, g is the acceleration due to gravity, and ρ is
the water density. Combining Eqs. (34), (35), and (36) to get
an equation for M∗0 gives

M∗0 =
3
√

3
2π

(θ − θc)3/2

θ1/2− 0.7θ1/2
c
=

3
√

3θc

2π
(θ/θc− 1)3/2

(θ/θc)1/2
− 0.7

. (37)

Here, the Shields stress θ = τ/(ρs− ρ)gD50, and θc is the
corresponding critical Shields stress, and we approximated
5.7/11.5= 0.496 with 1/2 (compare to Eqs. 35, 36). At high
θ , when the threshold can be neglected, Eq. (37) reduces to
a linear relationship between M∗0 and θ . Near the threshold,
M∗0 is shifted to lower values as θc increases (Fig. 8). The sys-
tematic variation of U∗ with the hydraulic driving conditions
(Eq. 36) implies that the cover function evolves differently in
response to changes in sediment supply and transport capac-
ity. For a first impression, by comparing Eqs. (35) and (36),
we assume that particle speed scales with transport capacity
raised to the power of one-third (Fig. 9).

3.3 Temporal evolution of cover within a reach

To calculate the temporal evolution of cover on the bed
within a single reach, we solved Eqs. (3), (22), (23), and
(24) numerically for a section of the bed with homogenous
conditions using a simple linear finite difference scheme. In
this case sediment input is a boundary condition, while sed-
iment output, mobile and stationary sediment mass, and the
fraction of the exposed bed are output variables. In general,
a change in sediment supply leads to a gradual adjustment
of the output variables towards a new steady state (Fig. 10).
It is desirable to obtain expressions for the response time
of the system to external perturbation, such as a change in
sediment supply or hydraulic conditions. Such a response
time could then be compared to the timescales of changes in
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Figure 6. Analytical solutions at steady state for the exposed fraction of the bed (A∗) as a function of relative sediment supply (Q∗, cf.
Fig. 2). (a) Comparison of the different solutions, keeping M∗0 constant at 1. (b) Varying M∗0 for the linear case (Eq. 31). (c) Varying M∗0 for
the exponential case (Eq. 30). (d) Varying M∗0 for the power law case with α = 0.1 (Eq. 32).
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Figure 7. Steady-state solutions using the Beta distribution to pa-
rameterize P (Eq. 10) for a range of parameters a and b and using
M∗0 = 1 (cf. Fig. 3). The solutions were obtained by iterating the
equations to a steady state, using initial conditions of A∗ = 1 and
M∗m =M

∗
s = 0.

boundary conditions. For example, during a flood event, both
transport capacity and sediment supply change over time. If
these changes are slow in comparison to the response time
of cover, the bed cover state can essentially keep up with
the imposed changes at all times, and therefore steady-state

equations (Sect. 3.2) can be used to calculate its evolution. In
contrast, if the imposed change is rapid in comparison to the
response time, cover may lag behind, and an approach that
resolves cover as a dynamic variable is necessary. This may,
for example, be important when studying the erosional be-
haviour of channels in response to floods (see Lague, 2010;
Turowski et al., 2013). Unfortunately, a general analytical so-
lution is not possible, but results can be obtained for special
cases. We first derive analytical solutions for the response
time for a reach without upstream sediment supply and for a
system responding to small perturbations in sediment supply
or transport capacity (Sect. 3.3.1) and discuss the system be-
haviour (Sect. 3.3.2). Finally, we apply the concepts to data
from a flood in a natural river and demonstrate that, for this
specific case, because of the response times, the steady-state
relations do not capture cover behaviour.

3.3.1 System timescales

First, consider a reach without upstream sediment supply; i.e.
q∗s = 0. Such a situation is rare in nature but could be easily
created in flume experiments as a model test. Then, the time
derivative of stationary mass is given by

∂M∗s
∂t∗
=−

(
1− e−M

∗
s
)
q∗t . (38)
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Using the exponential cover model (Eq. 8), we obtain

1
A∗ (1−A∗)

∂A∗

∂t∗
= q∗t . (39)

Equation (39) is separable and can be integrated to obtain

ln
(
A∗
)
− ln

(
1−A∗

)
= t∗q∗t +C. (40)

Letting A∗(t∗ =0) = A∗0, where A∗0 is the initial cover, the
final equation is in the form of a sigmoidal-type function:

A∗ =
1

1+
(

1−A∗0
A∗0

)
e−t

∗q∗t

. (41)

By making the parameters in the exponent on the right-
hand side of Eq. (42) dimensional, we get

t∗q∗t =
t

T

T

LM0
qt =

tqt

LM0
, (42)

which allows a characteristic system timescale TE to be
defined as

TE =
LM0

qt
. (43)

Since this timescale is dependent on the transport capac-
ity qt, we can view it as a timescale associated with the en-
trainment of sediment from the bed (cf. Eq. 20) – hence the
subscript “E” on TE. From Eq. (41), the exposed bed frac-
tion evolves in an asymptotic fashion towards equilibrium
(Fig. 11). We can expect that there are other characteristic
timescales for the system, for example associated with sedi-
ment deposition or downstream sediment evacuation.

We can make some further progress and define a more gen-
eral system timescale by performing a perturbation analysis
(Appendix A1). For small perturbations in either q∗s or q∗t ,
we obtain an exponential term describing the transient evo-
lution, which allows the definition of a system timescale TS

exp
{
−

(
q∗t −

(
1− e−q

∗
s U
∗
)
q∗s

)
t∗
}
= e
−

t
TS . (44)

Here, exp denotes the natural exponential function. The
characteristic system timescale can then be written as

TS =
LM0

qt

(
1−

(
1− e−q∗s U∗

)
qs
qt

) = LM0

qt
eM
∗
s . (45)

Note that for q∗s = 0, Eq. (45) reduces to Eq. (43), as would
be expected. Since M∗s is directly related to steady-state bed
exposure A∗, we can rewrite the equation, for example by
assuming the exponential cover function (Eq. 8), as

TS =
LM0

qtA∗
. (46)

Since bed cover is more easily measurable than the mass
on the bed, Eq. (46) can help to estimate system timescales
in the field. Further,A∗ varies between 0 and 1, which allows
the estimation of a minimum system time using Eq. (43). As
A∗ approaches 0, the system timescale diverges.
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Figure 10. Temporal evolution of cover for the simple case of a
control box with sediment through-flux, based on Eqs. (3), (22),
(23), and (24). Relative sediment supply (supply normalized by
transport capacity) was specified to 0.25 and increased to 1 at
t∗ = 5. The response of sediment output, mobile and stationary sed-
iment mass, and the exposed bed fraction was calculated. Here, we
used the exponential function for P (Eq. 8) andM∗0 = U

∗
= 1. The

initial values were A∗ = 1 and M∗m =M
∗
s = 0.

To illustrate these additional dependencies, we have used
numerical solutions of Eqs. (3), (22), (23), and (24) to calcu-
late the time needed to reach 99.9 % of total adjustment after
a step change in transport stage (chosen due to the asymptotic
behaviour of the system), analysed across a plausible range
of particle speeds U (Fig. 12). Response time decreases as
particle speed increases. This reflects elevated downstream
evacuation for higher particles speeds, resulting in a smaller
mobile particle mass and thus higher entrainment and lower
deposition rates. Response time also increases with increas-
ing relative sediment supply Q∗s . As the runs start with zero
sediment cover and the extent of cover increases with Q∗s , at
higher Q∗s the adjusted cover takes longer to develop.

3.3.2 Phase shift and gain in response to a cyclic
perturbation

The perturbation analysis (Appendix A) gives some insight
into the response of cover to cyclic sinusoidal perturbations.
Let sediment supply be perturbed in a cyclic way described
by an equation of the form

q∗s = q
∗
s + δq

∗
s = q

∗
s + dsin

(
2πt
p

)
. (47)

Here, the overbar denotes the temporal average, δq∗s is the
time-dependent perturbation, d is the amplitude of the pertur-
bation, and p its period. A similar perturbation can be applied
to the transport capacity (see Appendix A). The reaction of
the stationary mass and therefore cover can then also be de-
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Figure 11. Evolution of the exposed bed fraction (removal of sed-
iment cover) over time starting with different initial values of bed
exposure, for the special case of no sediment supply; i.e. q∗s = 0
(Eq. 41) and q∗t = 1.

scribed by sinusoidal function of the form (Appendix A)

δM∗s =Gsin
(

2πt
p
+ϕ

)
. (48)

Here, δM∗s is the perturbation of the stationary sediment
mass around the temporal average, G is known as the gain,
describing the amplitude response, and ϕ is the phase shift. If
the gain is large, stationary mass reacts strongly to the pertur-
bation; if it is small, the forcing does not leave a signal. The
phase shift is negative if the response lags behind the forcing
and positive if it leads. The phase shift can be written as

ϕ = tan−1
(
−2π

TS

p

)
. (49)

The gain can be written as

G=
p

TS

Kd√(
p
TS

)2
+ 4π2

. (50)

Here, d is the amplitude of the perturbation, and K is a
function of the time-averaged values of qs, qt, and U and
differs for perturbations in transport capacity and sediment
supply (see Appendix A). Thus, the system behaviour can be
interpreted as a function of the ratio of the period of pertur-
bation p and the system timescale Ts. The period p is large
if the forcing parameter, i.e. discharge or sediment supply,
varies slowly and small when it varies quickly. According to
Eq. (49), the phase shift is equal to −π/2 for low values of
p/Ts (quickly varying forcing parameter), implying a sub-
stantial lag in the adjustment of cover. The phase shift tends
to 0 as p/Ts tends to infinity (Fig. 13). The gain varies ap-
proximately linearly with p/Ts for small p/Ts (quickly vary-
ing forcing parameter), while it is approximately constant at
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a value of Kd for large p/Ts (slowly varying forcing param-
eter) (Eq. 50). Thus, if the forcing parameter varies slowly,
cover adjustment keeps up at all times.

3.3.3 A flood at the Erlenbach

To illustrate the magnitude of the timescales using real data,
we use a flood data set from the Erlenbach, a sediment trans-
port observatory in the Swiss Prealps (e.g. Beer et al., 2015).
There, near a discharge gauge, bedload transport rates are
measured at 1 min resolution using the Swiss Plate Geophone
System, a highly developed and fully calibrated surrogate
bedload measuring system (e.g. Rickenmann et al., 2012;
Wyss et al., 2016). We use data from a flood on 20 June 2007
(Turowski et al., 2009) with the highest peak discharge that
has so far been observed at the Erlenbach. The meteorolog-
ical conditions that triggered this flood and its geomorphic

effects have been described in detail elsewhere (Molnar et
al., 2010; Turowski et al., 2009, 2013). The Erlenbach does
not have a bedrock bed in the sense that bedrock is exposed
in the channel bed; however, the data provide a realistic nat-
ural time series of discharge and bedload transport over the
course of a single event. Rather than predicting bed cover
evolution for a natural system, for which we do not currently
have data for validation, we use the Erlenbach data to illus-
trate possible cover behaviour during a fictitious event with
different initial sediment cover extents, using natural data to
provide realistic boundary conditions.

Using a median grain size of 80 mm, a sediment density
of 2650 kg m−3, and a reach length of 50 m, we obtained
M0 = 128 kg m−2. We calculated transport capacity using
the equation of Fernandez Luque and van Beek (1976). How-
ever, it is known that this and similar equations strongly over-
estimate measured transport rates in streams such as the Er-
lenbach (e.g. Nitsche et al., 2011). Consequently, we rescaled
by setting the ratio of bedload supply to capacity to 1 at the
highest discharge. The exposed fraction was then calculated
iteratively assuming P = A∗ (i.e. the exponential cover for-
mulation, Eq. 8). In a real flood event, water discharge and
sediment supply obviously do not follow a small cyclic per-
turbation (Fig. 13). But we can tentatively relate the obser-
vations to the theory by assuming that at each time step, the
change in sediment supply can be represented by the com-
mencement of a sinusoidal perturbation with varying period.
To estimate the effective period p, one needs to take the
derivatives of Eq. (47).

dq∗s
dt
=

dδq∗s
dt
=

2πd
p

cos
(

2πt
p

)
(51)

Setting t = 0 for the time of interest, we can relate p to
the local gradient in bedload supply, which can be measured
from the data.

2πd
p
=
1q∗s
1t

(52)
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Assuming that all change in the response time is due to
changes in the period (i.e. assuming a constant amplitude,
d = 1), we can obtain a conservative estimate of the range
over which p varies over the course of an event.

p = 2π
1t

1q∗s
(53)

In the exemplary event, the evolution and final value of bed
cover depends strongly on its initial value (Fig. 14), indicat-
ing that the adjustment is incomplete. The system timescale
is generally larger than 1000 s and is inversely related to dis-
charge via the dependence on transport capacity. The p/Ts
ratio varies around 1, with low values at the beginning of the
flood and large values in the waning hydrograph. Both the
high values of the system timescale and the smooth evolution
of bed cover over the course of the flood imply that cover
development cannot keep up with the variation in the forc-
ing characteristics. This dynamic adjustment of cover, which
can lag forcing processes, may thus play an important role in
the dynamics of bedrock channels and probably needs to be
taken into account in modelling.

4 Discussion

4.1 Model formulation

In principle, the framework for the cover effect presented
here allows the formulation of a general model for bedrock
channel morphodynamics without the restrictions of previ-
ous models (e.g. Nelson and Seminara, 2011; Zhang et al.,
2015). To achieve this, the dependency of P on various con-
trol parameters needs to be specified. In general, P should
be controlled by local topography, grain size and shape, hy-
draulic forcing, and the amount of sediment already resid-
ing on the bed. Furthermore, the shape of the P function
should also be affected by feedbacks between these prop-
erties, such as the development of sediment cover altering
the local roughness and hence altering hydraulics and local
transport capacity (Inoue et al., 2014; Johnson, 2014). In the
treatment presented here, we have explicitly accounted only
for the impact of the amount of sediment already residing
on the bed. However, all of the mentioned effects can be in-
cluded implicitly by an appropriate choice of P . The exact
relationships between, say, bed topography and P need to be
mapped out experimentally (e.g. Inoue et al., 2014), with the-
oretical approaches also providing some direction (cf. John-
son, 2014; Zhang et al., 2015). Currently available experi-
mental results (Chatanantavet and Parker, 2008; Finnegan et
al., 2007; Hodge and Hoey, 2016; Inoue et al., 2014; Johnson
and Whipple, 2007) cover only a small range of the possible
parameter space, and, in general, not all necessary parame-
ters to constrain P were reported. Specifically the station-
ary mass of sediment residing on the bed is usually not re-
ported and can be difficult to determine experimentally but
is necessary to determine P . Nevertheless, depending on the

choice of P , our model can yield a wide range of cover func-
tions that encompasses reported functions both from numer-
ical modelling (e.g. Aubert et al., 2016; Hodge and Hoey,
2012; Johnson, 2014) and experiments (Chatanantavet and
Parker, 2008; Inoue et al., 2014; Sklar and Dietrich, 2001)
(see Figs. 4 and 5).

The dynamic model put forward here is a minimum first-
order formulation, and there are some obvious future alter-
ations. We only take account of the static cover effect caused
by immobile sediment on the bed. The dynamic cover effect,
which arises when moving grains interact at high sediment
concentration and thus reduce the number of impacts on the
bed (Turowski et al., 2007), could in principle be included
in the formulation but would necessitate a second probability
function specifically to describe this dynamic cover. It would
also be possible to use different P functions for entrainment
and deposition, thus introducing hysteresis into cover devel-
opment. Such hysteresis has been observed in experiments in
which the equilibrium sediment cover was a function of the
initial extent of sediment cover (Chatanantavet and Parker,
2008; Hodge and Hoey, 2012). Whether such alterations are
necessary is best established with targeted laboratory experi-
ments.

4.2 Comparison to previous modelling frameworks

We will briefly outline in this section the main differences
to previous formulations of cover dynamics in bedrock chan-
nels. Thus, the novel aspects of our formulation and the re-
spective advantages and disadvantages will become clear.

Aubert et al. (2015) coupled the movement of spherical
particles to the simulation of a turbulent fluid and investi-
gated how cover depends on transport capacity and supply.
Similar to what is predicted by our analytical formulation,
they found a range of cover function for various model set-
ups, including linear and convex-up relationships (compare
the results in Fig. 6 to their Fig. 15). Aubert et al. (2015) pre-
sented the most detailed physical simulations of bed cover
formation so far, and the correspondence between the pre-
dictions is encouraging.

Nelson and Seminara (2011, 2012) formulated a morpho-
dynamic model for bedrock channels. They based their for-
mulation on sediment concentration, which is in principle
similar to our formulation based on mass. However, Nelson
and Seminara (2011, 2012) did not distinguish between mo-
bile and stationary sediment and linked local transport di-
rectly to sediment concentration. Further, Nelson and Semi-
nara (2011, 2012) assumed a direct correspondence between
sediment concentration and degree of cover, which is equiv-
alent to the linear cover function (Eq. 6). In this case, it is
assumed that grains are always deposited on uncovered bed,
and the different possible distributions of particles within a
grid node are not taken into account. Practically, this implies
that the grid size needs to be of the order of the grain size be-
cause, strictly, the assumption is only valid if a single grain
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Figure 14. Calculated evolution of cover during the largest event observed at the Erlenbach on 20 June 2007 (Turowski et al., 2009). Bedload
transport rates were measured with the Swiss Plate geophone sensors calibrated with direct bedload samples (Rickenmann et al., 2012). The
final fraction of exposed bedrock is strongly dependent on its initial value.

can cover an entire grid node (cf. Fig. 1). Although different
in various details, Inoue et al. (2016) have used essentially
the same approach as Nelson and Seminar (2011, 2012) to
link bedload concentration, transport, and bed cover. Both of
these models allow the 2-D modelling of bedrock channel
morphology. Although we have not fully developed such a
model in the present paper, our model framework could eas-
ily be extended to 2-D problems.

Inoue et al. (2014) formulated a 1-D model for cover dy-
namics and bedrock erosion. There, they distinguish between
stationary and mobile sediment using an Exner equation to
capture sediment mass conservation. The degree of bed cover
is related to transport rates and sediment mass via a satura-
tion volume, which is related to our characteristic mass M∗0
(see Sect. 3.2). A key difference between Inoue et al.’s (2014)
model and the ones presented here lies in the sediment mass
conservation equations (Eqs. 13 and 14), in which we explic-

itly take account of both entrainment and deposition. In addi-
tion, with the function P , describing the relationship between
deposited mass and degree of cover, we provide a more flexi-
ble framework for complex simulations where the bed needs
to be discretized (e.g. 2-D models or reach-scale formula-
tions).

Zhang et al. (2015) formulated a bed cover model specif-
ically for beds with macro-roughness. There, deposited sed-
iment always fills topographic lows from their deepest po-
sitions, such that there is a reach-uniform sediment level.
While the model provides a fundamentally different ap-
proach to what is suggested here, its applicability is limited
to very rough beds, and the assumption of a sediment ele-
vation that is independent of the position on the bed seems
physically unrealistic. In principle, the probabilistic frame-
work presented here should be able to deal with macro-rough
beds, by making the P function (Eq. 3) explicitly dependent
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on roughness, and thus it allows a more general treatment of
the problem of bed cover.

In this paper, we focused on the dynamics of bed cover
rather than on the modelling of the dynamics of entire chan-
nels. The probabilistic formulation using the parameter P
provides a flexible framework to connect the sediment mass
residing on the bed with the exposed bedrock fraction. This
particular element has not been treated in any of the previous
models and could be easily implemented in other approaches
dealing with sediment fluxes along and across the stream and
the interaction with erosion and, over long timescales, chan-
nel morphology. However, it is as yet unclear how flow hy-
draulics, sediment properties, and other conditions affect P ,
and this should be investigated in targeted laboratory experi-
ments.

4.3 Further implications

Based on field data interpretation, Phillips and Jerol-
mack (2016) argued that bedrock rivers adjust such that, sim-
ilar to alluvial channels, medium-sized floods are most ef-
fective in transporting sediment and that channel geometry
therefore can quickly adjust their transport capacity to the
applied load and therefore achieve grade (cf. Mackin, 1948).
They conclude that bedrock channels can adjust their mor-
phologic parameters (channel width and shape) quickly in
response to changing boundary conditions. In contrast, our
model suggests that instead bed cover can be adjusted to
achieve grade. In steady state, time derivatives need to be
equal to 0. Thus, entrainment equals deposition (Eq. 14),
implying that the downstream gradient in sediment trans-
port rate is equal to 0 (Eq. 13). When sediment supply or
transport capacity change, the exposed bedrock fraction can
adjust to achieve a new steady state, and a change in the
channel geometry is unnecessary. These changes in sedi-
ment cover can occur far more rapidly than changes in width
and cross-sectional shape (compare to Eq. 46). Whether a
steady state is achieved depends on the relative magnitude
of the timescales of perturbation and cover adjustment (see
Sect. 3). Our results imply that bedrock channels have two
distinct timescales to adjust to changing boundary conditions
to achieve grade. Over short times, bed cover is adjusted.
This can occur rapidly. Over long timescales, channel width,
cross-sectional shape, and slope are adjusted.

5 Conclusions

The probabilistic view put forward in this paper offers a
framework into which diverse data on bed cover, whether ob-
tained from field studies, laboratory experiments, or numer-
ical modelling, can be easily converted to be meaningfully
compared. The conversion requires knowledge of the mass
of sediment on the bed and the evolution of exposed fraction
of the bed. Within the framework, individual data sets can
be compared to the exponential benchmark and linear limit
cases, enabling physical interpretation. Furthermore, the for-
mulation allows the general dynamic sub-grid modelling of
bed cover. Depending on the choice of P , the model yields a
wide range of possible cover functions. Which of these func-
tions are appropriate for natural rivers and how they vary
with factors including topography needs to mapped out ex-
perimentally.

It needs to be noted here that the precise formulation of
the entrainment and deposition functions also affects steady-
state cover relations. When calibrating P on data, it can-
not always be decided whether a specific deviation from the
benchmark case results from varying entrainment and depo-
sition processes or from changes in the probability function
driven for example by variations in roughness. For the pre-
diction of the steady-state cover relations and for the com-
parison of data sets, this should not matter, but the dynamic
evolution of cover could be strongly affected.

The system timescale for cover adjustment is inversely re-
lated to transport capacity. This timescale can be long and in
many realistic situations, cover cannot instantaneously adjust
to changes in the forcing conditions. Thus, dynamic cover ad-
justment needs to be taken into account when modelling the
long-term evolution of bedrock channels.

Our model formulation implies that bedrock channels ad-
just bed cover to achieve grade. Therefore, bedrock channel
evolution is driven by two optimization principles. On short
timescales, bed cover adjusts to match the sediment output
of a reach to its input. Over long timescales, width and slope
of the channel evolve to match long-term incision rate to tec-
tonic uplift or base-level lowering rates.

Data availability. The model data used in Sect. 2.2 (Fig. 3) can
be obtained by contacting the authors. The Erlenbach data used in
Sect. 3.3.3 (Fig. 14) belong to the Mountain Hydrology and Mass
Movements Group at the Swiss Federal Research Institute for For-
est Snow and Landscape Research WSL and have been used with
permission.
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Appendix A: Perturbation analysis

Here, we derive the effect of a small sinusoidal perturba-
tion of the driving variables, namely sediment supply q∗s and
transport capacity q∗t , on cover development. The perturba-
tion of the driving variables can be written as

q∗s = q
∗
s + δq

∗
s , (A1)

q∗t = q
∗
t + δq

∗
t . (A2)

Here, the bar denotes the average of the quantity at steady
state, while δq∗s and δq∗t denote the small perturbation. The
exposed area can be similarly written as

A∗ = A∗+ δA∗. (A3)

Steady-state cover is directly related to the mass on the bed
M∗s by Eq. (3), which, as long as P is independent of time,
we can rewrite as

dA∗

dt
=−P

dM∗s
dt

. (A4)

Substituting Eq. (A3) and a similar equation for M∗s ,

M∗s =M
∗
s + δM

∗
s , (A5)

we obtain

dδA∗

dt
=−P

dδM∗s
dt

. (A6)

Here, the averaged terms drop out as they are independent
of time. If P and the steady-state solution for A∗ are known,
a direct relationship between A∗ and M∗s can be derived. For
example, for the exponential cover model (Eq. 8), substitut-
ing Eqs. (A3) and (A5), we find

A∗+ δA∗ = e−M
∗
s −δM

∗
s = e−M

∗
s e−δM

∗
s = A∗e−δM

∗
s (A7)

≈ A∗
(
1− δM∗s

)
.

Here, since the δ variables are small, we approximated the
exponential term using a Taylor expansion to first order. We
obtain perturbation of sediment supply

δA∗ =−A∗δM∗s . (A8)

It is therefore sufficient to derive the perturbation solution
for M∗s , the time evolution of which is given by Eq. (22).
Eliminating M∗m using Eq. (24), we obtain

∂M∗s
∂t∗
=

(
1− e−q

∗
s /U

∗
)
q∗s −

(
1− e−M

∗
s
)
q∗t . (A9)

A1 Perturbation of sediment supply

First, let us look at a perturbation of sediment supply
q∗s , while other parameters are held constant. Substituting

Eqs. (A1) and (A5) into Eq. (A9), we obtain

∂δM∗s
∂t∗

=

(
1− e−

(
q∗s +δq

∗
s
)
/U∗

)(
q∗s + δq

∗
s
)

(A10)

−

(
1− e−M

∗
s −δM

∗
s
)
q∗t .

Again, since the δ variables are small, we can replace the
relevant exponentials with a Taylor expansion to first order:

e−δq
∗
s /U

∗

≈ 1−
δq∗s
U∗

. (A11)

A similar approximation applies for the exponential inM∗s .
Substituting Eq. (A11) into Eq. (A10), expanding the multi-
plicative terms, dropping terms of second order in the δ vari-
ables and rearranging, we get

∂δM∗s
∂t∗

= δq∗s

(
1− e−q

∗
s U
∗

+
q∗s
U∗
e−q

∗
s /U

∗

)
(A12)

− δM∗s

(
q∗t −

(
1− e−q

∗
s /U

∗
)
q∗s

)
.

The perturbation is assumed to be sinusoidal

δq∗s = d sin
(

2πt
p

)
. (A13)

Here, p is the period of the perturbation and d is its am-
plitude. Note that, to be consistent with the assumptions pre-
viously made, d needs to be small in comparison with the
average sediment supply. Substituting, Eq. (A12) can be in-
tegrated to obtain the solution

δM∗s = Gq∗s sin
(

2πt
P
+ϕq∗s

)
+C (A14)

exp
{
−

(
q∗t −

(
1− e−q

∗
s /U

∗
)
q∗s

) t
T

}
,

where C is a constant of integration. The gain is given by

Gq∗s =
p

T

(
1− e−q∗s /U

∗

+
q∗s
U∗
e−q

∗
s /U

∗
)
d√(

q∗t −
(

1− e−q∗s /U∗
)
q∗s

)2( p
T

)2
+ 4π2

(A15)

and the phase shift by

ϕq∗s = tan−1

− 2π
p
T

(
q∗t −

(
1− e−q∗s /U∗

)
q∗s

)
 . (A16)

A2 Perturbation of transport capacity

The perturbation of the transport capacity q∗t is a little more
complicated, since both q∗t and U∗ are explicitly dependent
on hydraulics (e.g. shear stress; see Eqs. 43 and 44), and thus
U∗ is implicitly dependent on q∗t and δq∗t . To circumvent this
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problem, we expand the exponential term featuring U∗(δq∗t )
in Eq. (A9) using a Taylor series expansion around δq∗t = 0.

exp

{
−

q∗s

U∗
(
δq∗t

)} (A17)

≈ exp

{
−

q∗s

U∗
(
δq∗t = 0

)}[
1−

q∗s

U∗
2 (
δq∗t = 0

) ∂U∗
∂δq∗t

(
δq∗t = 0

)
δq∗t

]

Both U∗ and its derivative are constants when evaluated at
δq∗t = 0. We can thus write

exp
{
−
q∗s
U∗

}
= exp

{
−
q∗s

U∗

}[
1−

q∗s

U∗
2

(
∂U∗

∂δq∗t

)
δq∗t

]
=
[
1−C0δq

∗
t
]
eq
∗
s /U

∗

. (A18)

Here, C0 is a constant. Proceeding as before by substitut-
ing Eqs. (A2), (A8), and (A17) into (A9), expanding expo-
nential terms containing δ variables, dropping terms of sec-
ond order in the δ variables, and rearranging, we obtain

∂δM∗s
∂t∗

= (A19)(
Bq∗s e

−q∗s /U
∗

+ e−M
∗
s − 1

)
δq∗t − δM

∗
s q
∗
t e
−M∗s .

A sinusoidal perturbation of the form

δq∗t = d sin
(

2πt
p

)
(A20)

yields the solution

δM∗s =Gq∗t sin
(

2πt
P
+ϕq∗t

)
(A21)

+C exp
{
−

(
q∗t −

(
1− e−q

∗
s /U

∗
)
q∗s

) t
p

}
{
−

(
q∗t −

(
1− e−q

∗
s /U

∗
)
q∗s

) t
T

}
,

with

Gq∗t =
p

T

(
q∗

2
s

U∗
2

(
∂U∗

∂δq∗t

)
e−q

∗
s /U

∗

−

(
1− e−q

∗
s /U

∗
)
q∗s
q∗t

)
d√

q∗t
2( p
T

)2(1−
(
1− e−q∗s /U∗

) q∗s
q∗t

)2

+ 4π2

(A22)

and

ϕ = tan−1

− 2π
p
T

(
q∗t −

(
1− e−q∗s /U∗

)
q∗s

)
 . (A23)

A3 Summary

Using the system timescale TS, the phase shift and gain can
be generally rewritten as

ϕ = tan−1
(
−2π

TS

p

)
, (A24)

G=
p

TS

Kd√(
p
TS

)2
+ 4π2

. (A25)

Here, K differs for perturbations in sediment supply and
transport capacity, given by the equations

Kq∗s = 1− e−q
∗
s /U

∗

+
q∗s
U∗
e−q

∗
s /U

∗

, (A26)

Kq∗t =
q∗

2

s

U∗
2

(
∂U∗

∂δq∗t

)
e−q

∗
s /U

∗

−

(
1− e−q

∗
s /U

∗
) q∗s
q∗t
. (A27)
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Appendix B: Notation

Overbars denote time-averaged quantities.
a Shape parameter in the regularized

incomplete Beta function
A∗ Fraction of exposed (uncovered) bed area
A∗c Fraction of covered bed area
b Shape parameter in the regularized

incomplete Beta function
B Regularized incomplete Beta function
C Constant of integration
C0 Constant (m2s kg−1)
d Amplitude of perturbation (kg m−2s)
D Sediment deposition rate per bed area (kg m−2s)
Dtot Sediment deposition rate (kg s−1)
D∗ Dimensionless sediment deposition rate
D50 Median grain size (m)
e Base of the natural logarithm
E Sediment entrainment rate per bed area (kg m−2s)
Etot Sediment entrainment rate (kg s−1)
E∗ Dimensionless sediment entrainment rate
Emax Maximal possible dimensionless

sediment entrainment rate
g Acceleration due to gravity (m s−2)
G Gain (kg m−2s)
I Non-dimensional incision rate
k Probability of sediment deposition on uncovered

parts of the bed, linear implementation
K Parameter in the gain equation
L Characteristic length scale (m)
M0 Minimum mass per area necessary to cover

the bed (kg m−2)
M∗0 Dimensionless characteristic sediment mass
Mm Mobile sediment mass (kg m−2)
M∗m Dimensionless mobile sediment mass
Ms Stationary sediment mass (kg m−2)
M∗s Dimensionless stationary sediment mass
p Period of perturbation (s)
pc Probability of entrainment, CA model, blocked grains
pi Probability of entrainment, CA model, free grains
P Probability of sediment deposition

on uncovered parts of the bed
qs Mass sediment transport rate per unit width (kg ms−1)
q∗s Dimensionless sediment transport rate
qt Mass sediment transport capacity

per unit width (kg ms−1)
q∗t Dimensionless transport capacity
Q∗s Relative sediment supply; sediment transport

rate over transport capacity
Qt Mass sediment transport capacity (kg s−1)
t Time variable (s)
t∗ Dimensionless time
T Characteristic timescale (s)

TE Characteristic timescale for
sediment entrainment (s)

TS Characteristic system timescale (s)
U Sediment speed (m s−1)
U∗ Dimensionless sediment speed
x Dimensional streamwise spatial coordinate (m)
x∗ Dimensionless streamwise spatial coordinate
y Dummy variable
α Exponent
γ Fraction of pore space in the sediment
δ Denotes time-varying component
1in Sediment supply rate from

upstream direction (kg s−1)
1out Transport rate of sediment leaving in

the downstream direction (kg s−1)
1Mm Change in mobile sediment mass (kg)
1t Change in time (s)
θ Shields stress
θc Critical Shields stress
ρ Density of water (kg m−3)
ρs Density of sediment (kg m−3)
τ Bed shear stress (N m−2)
τc Critical bed shear stress at the onset of

bedload motion (N m−2)

Earth Surf. Dynam., 5, 311–330, 2017 www.earth-surf-dynam.net/5/311/2017/



J. M. Turowski and R. Hodge: A probabilistic framework for the cover effect in bedrock erosion 329

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. We thank J. Scheingross and J. Braun for
insightful discussions and two anonymous reviewers and associate
editor D. Egholm for their comments on the paper. The data
from the Erlenbach is owned by and was used with permission
of the Mountain Hydrology and Mass Movements Group at the
Swiss Federal Research Institute for Forest Snow and Landscape
Research WSL.

The article processing charges for this open-access
publication were covered by a Research
Centre of the Helmholtz Association.

Edited by: David Lundbek Egholm
Reviewed by: two anonymous referees

References

Aubert, G., Langlois, V. J., and Allemand, P.: Bedrock incision by
bedload: insights from direct numerical simulations, Earth Surf.
Dynam., 4, 327–342, https://doi.org/10.5194/esurf-4-327-2016,
2016.

Beer, A. R. and Turowski, J. M.: Bedload transport controls bedrock
erosion under sediment-starved conditions, Earth Surf. Dynam.,
3, 291–309, https://doi.org/10.5194/esurf-3-291-2015, 2015.

Beer, A. R., Turowski, J. M., Fritschi, B., and Rieke-Zapp, D. H.:
Field instrumentation for high-resolution parallel monitoring of
bedrock erosion and bedload transport, Earth Surf. Proc. Land.,
40, 530–541, https://doi.org/10.1002/esp.3652, 2015.

Beer, A. R., Kirchner, J. W., and Turowski, J. M.: Graffiti for
science – erosion painting reveals spatially variable erosiv-
ity of sediment-laden flows, Earth Surf. Dynam., 4, 885–894,
https://doi.org/10.5194/esurf-4-885-2016, 2016.

Charru, F., Mouilleron, H., and Eiff, O.: Erosion and deposition of
particles on a bed sheared by a viscous flow, J. Fluid Mech., 519,
55–80, 2004.

Chatanantavet, P. and Parker, G.: Experimental study of
bedrock channel alluviation under varied sediment supply
and hydraulic conditions, Water Resour. Res., 44, W12446,
https://doi.org/10.1029/2007WR006581, 2008.

Cook, K., Turowski, J. M., and Hovius, N.: A demonstration of the
importance of bedload transport for fluvial bedrock erosion and
knickpoint propagation, Earth Surf. Proc. Land., 38, 683–695,
https://doi.org/10.1002/esp.3313, 2013.

Fernandez Luque, R. and van Beek, R.: Erosion and transport of
bed-load sediment, J. Hydraul. Res., 14, 127–144, 1976.

Finnegan, N. J., Sklar, L. S., and Fuller, T. K.: Interplay of sediment
supply, river incision, and channel morphology revealed by the
transient evolution of an experimental bedrock channel, J. Geo-
phys. Res., 112, F03S11, https://doi.org/10.1029/2006JF000569,
2007.

Gilbert, G. K.: Report on the geology of the Henry Mountains: Ge-
ographical and geological survey of the Rocky Mountain region,
US Gov. Print. Off., Washington, DC, 1877.

Hobley, D. E. J., Sinclair, H. D., Mudd, S. M., and
Cowie, P. A.: Field calibration of sediment flux de-
pendent river incision, J. Geophys. Res., 116, F04017,
https://doi.org/10.1029/2010JF001935, 2011.

Hodge, R. A.: Sediment processes in bedrock-alluvial rivers: Re-
search since 2010 and modelling the impact of fluctuating sed-
iment supply on sediment cover, Chapter 24, in: Gravel-Bed
Rivers: Process and Disasters, edited by: Tsutsumi, D. and
Laronne, J., Chichester, UK Hoboken, NJ, Wiley-Blackwell,
639–670, 2017.

Hodge, R. A. and Hoey, T. B.: Upscaling from grain-scale
processes to alluviation in bedrock channels using a cel-
lular automaton model, J. Geophys. Res., 117, F01017,
https://doi.org/10.1029/2011JF002145, 2012.

Hodge, R. A. and Hoey, T. B.: A Froude scale model of a bedrock-
alluvial channel reach: 2. Sediment cover, J. Geophys. Res., 121,
1597–1618, https://doi.org/10.1002/2015JF003709, 2016.

Hodge, R. A., Hoey, T. B., and Sklar, L. S.: Bedload transport
in bedrock rivers: the role of sediment cover in grain entrain-
ment, translation and deposition, J. Geophys. Res., 116, F04028,
https://doi.org/10.1029/2011JF002032, 2011.

Inoue, T., Izumi, N., Shimizu, Y., and Parker, G.: Interaction among
alluvial cover, bed roughness, and incision rate in purely bedrock
and alluvial-bedrock channel, J. Geophys. Res., 119, 2123–2146,
https://doi.org/10.1002/2014JF003133, 2014.

Inoue, T., Iwasaki, T., Parker, G., Shimizu, Y., Izumi, N., Stark,
C. P., and Funaki, J.: Numerical simulation of effects of
sediment supply on bedrock channel morphology, J. Hydr.
Eng., 142, 04016014, https://doi.org/10.1061/(ASCE)HY.1943-
7900.0001124, 2016.

Johnson, J. P. L.: A surface roughness model for pre-
dicting alluvial cover and bed load transport rate in
bedrock channels, J. Geophys. Res., 119, 2147–2173,
https://doi.org/10.1002/2013JF003000, 2014.

Johnson, J. P. and Whipple, K. X.: Feedbacks between erosion and
sediment transport in experimental bedrock channels, Earth Surf.
Proc. Land., 32, 1048–1062, https://doi.org/10.1002/esp.1471,
2007.

Lague, D.: Reduction of long-term bedrock incision efficiency by
short-term alluvial cover intermittency, J. Geophys. Res., 115,
F02011, https://doi.org/10.1029/2008JF001210, 2010.

Lajeunesse, E., Malverti, L., and Charru, F.: Bed load
transport in turbulent flow at the grain scale: Experi-
ments and modeling, J. Geophys. Res., 115, F04001,
https://doi.org/10.1029/2009JF001628, 2010.

Paola, C. and Voller, V. R.: A generalized Exner equation
for sediment mass balance, J. Geophys. Res., 110, F04014,
https://doi.org/10.1029/2004JF000274, 2005.

Phillips, C. B. and Jerolmack, D. J.: Self-organization of river chan-
nels as a critical filter on climate signals, Science, 352, 694–697,
https://doi.org/10.1126/science.aad3348, 2016.

Mackin, J. H.: Concept of the graded river, Geol. Soc.
Am. Bull., 59, 463–512, https://doi.org/10.1130/0016-
7606(1948)59[463:COTGR]2.0.CO;2, 1948.

Meyer-Peter, E. and Mueller, R.: Formulas for bedload transport, in
2nd Meeting Int. Assoc. Hydraulic Structures Res., Stockholm,
Sweden, 1948.

Molnar, P., Densmore, A. L., McArdell, B. W., Turowski,
J. M., and Burlando P.: Analysis of changes in the step-

www.earth-surf-dynam.net/5/311/2017/ Earth Surf. Dynam., 5, 311–330, 2017

https://doi.org/10.5194/esurf-4-327-2016
https://doi.org/10.5194/esurf-3-291-2015
https://doi.org/10.1002/esp.3652
https://doi.org/10.5194/esurf-4-885-2016
https://doi.org/10.1029/2007WR006581
https://doi.org/10.1002/esp.3313
https://doi.org/10.1029/2006JF000569
https://doi.org/10.1029/2010JF001935
https://doi.org/10.1029/2011JF002145
https://doi.org/10.1002/2015JF003709
https://doi.org/10.1029/2011JF002032
https://doi.org/10.1002/2014JF003133
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001124
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001124
https://doi.org/10.1002/2013JF003000
https://doi.org/10.1002/esp.1471
https://doi.org/10.1029/2008JF001210
https://doi.org/10.1029/2009JF001628
https://doi.org/10.1029/2004JF000274
https://doi.org/10.1126/science.aad3348
https://doi.org/10.1130/0016-7606(1948)59[463:COTGR]2.0.CO;2
https://doi.org/10.1130/0016-7606(1948)59[463:COTGR]2.0.CO;2


330 J. M. Turowski and R. Hodge: A probabilistic framework for the cover effect in bedrock erosion

pool morphology and channel profile of a steep mountain
stream following a large flood, Geomorphology, 124, 85–94,
https://doi.org/10.1016/j.geomorph.2010.08.014, 2010.

Nelson, P. A. and Seminara, G.: Modeling the evolution of bedrock
channel shape with erosion from saltating bed load, Geophys.
Res. Lett., 38, L17406, https://doi.org/10.1029/2011GL048628,
2011.

Nelson, P. A. and Seminara, G.: A theoretical framework for the
morphodynamics of bedrock channels, Geophys. Res. Lett., 39,
L06408, https://doi.org/10.1029/2011GL050806, 2012.

Nitsche, M., Rickenmann, D., Turowski, J. M., Badoux, A., and
Kirchner, J. W.: Evaluation of bedload transport predictions us-
ing flow resistance equations to account for macro-roughness
in steep mountain streams, Water Resour. Res., 47, W08513,
https://doi.org/10.1029/2011WR010645, 2011.

Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., and Lud-
wig, A.: Improved sediment transport measurements in the Er-
lenbach stream including a moving basket system, Earth Surf.
Proc. Land., 37, 1000–1011, https://doi.org/10.1002/esp.3225,
2012.

Sklar, L. S. and Dietrich, W.: River longitudinal profiles and
bedrock incision models: Stream power and the influence of sed-
iment supply, in: Rivers over Rock: Fluvial Processes in Bedrock
Channels, edited by: Tinkler, K. J. and Wohl, E. E., American
Geophysical Union, 107, 237–260, 1998.

Sklar, L. S. and Dietrich, W. E.: Sediment and rock
strength controls on river incision into bedrock, Ge-
ology, 29, 1087–1090, https://doi.org/10.1130/0091-
7613(2001)029<1087:SARSCO>2.0.CO;2, 2001.

Sklar, L. S. and Dietrich, W. E.: A mechanistic model for river inci-
sion into bedrock by saltating bed load, Water Resour. Res., 40,
W06301, https://doi.org/10.1029/2003WR002496, 2004.

Turowski, J. M.: Stochastic modeling of the cover effect
and bedrock erosion, Water Resour. Res., 45, W03422,
https://doi.org/10.1029/2008WR007262, 2009.

Turowski, J. M. and Bloem, J.-P.: The influence of sed-
iment thickness on energy delivery to the bed by
bedload impacts, Geodinamica Acta, 28, 199–208,
https://doi.org/10.1080/09853111.2015.1047195, 2016.

Turowski, J. M. and Rickenmann, D.: Tools and cover effects in
bedload transport observations in the Pitzbach, Austria, Earth
Surf. Proc. Land., 34, 26–37, https://doi.org/10.1002/esp.1686,
2009.

Turowski, J. M., Lague, D., and Hovius, N.: Cover effect in bedrock
abrasion: A new derivation and its implication for the modeling
of bedrock channel morphology, J. Geophys. Res., 112, F04006,
https://doi.org/10.1029/2006JF000697, 2007.

Turowski, J. M., Hovius, N., Hsieh, M.-L., Lague,
D., and Chen, M.-C.: Distribution of erosion across
bedrock channels, Earth Surf. Proc. Land., 33, 353–363,
https://doi.org/10.1002/esp.1559, 2008.

Turowski, J. M., Yager E. M., Badoux, A., Rickenmann, D., and
Molnar, P.: The impact of exceptional events on erosion, bedload
transport and channel stability in a step-pool channel, Earth Surf.
Proc. Land., 34, 1661–1673, https://doi.org/10.1002/esp.1855,
2009.

Turowski, J. M., Badoux, A., Leuzinger, J., and Hegglin, R.: Large
floods, alluvial overprint, and bedrock erosion, Earth Surf. Proc.
Land., 38, 947–958, https://doi.org/10.1002/esp.3341, 2013.

Wohl, E. E. and Ikeda, H.: Experimental simulation of chan-
nel incision into a cohesive substrate at varying gra-
dients, Geology, 25, 295–298, https://doi.org/10.1130/0091-
7613(1997)025<0295:ESOCII>2.3.CO;2, 1997.

Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J. M.,
Weitbrecht, V., and Boes, R. M.: Measuring bedload trans-
port rates by grain-size fraction using the Swiss Plate Geo-
phone signal at the Erlenbach, J. Hydraul. Eng., 142, 04016003,
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001090, 2016.

Yanites, B. J., Tucker, G. E., Hsu, H.-L., Chen, C.-C., Chen, Y.-
G., and Mueller, K. J.: The influence of sediment cover vari-
ability on long-term river incision rates: An example from the
Peikang River, central Taiwan, J. Geophys. Res., 116, F03016,
https://doi.org/10.1029/2010JF001933, 2011.

Zhang, L., Parker, G., Stark, C. P., Inoue, T., Viparelli, E.,
Fu, X., and Izumi, N.: Macro-roughness model of bedrock–
alluvial river morphodynamics, Earth Surf. Dynam., 3, 113–138,
https://doi.org/10.5194/esurf-3-113-2015, 2015.

Earth Surf. Dynam., 5, 311–330, 2017 www.earth-surf-dynam.net/5/311/2017/

https://doi.org/10.1016/j.geomorph.2010.08.014
https://doi.org/10.1029/2011GL048628
https://doi.org/10.1029/2011GL050806
https://doi.org/10.1029/2011WR010645
https://doi.org/10.1002/esp.3225
https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2
https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2
https://doi.org/10.1029/2003WR002496
https://doi.org/10.1029/2008WR007262
https://doi.org/10.1080/09853111.2015.1047195
https://doi.org/10.1002/esp.1686
https://doi.org/10.1029/2006JF000697
https://doi.org/10.1002/esp.1559
https://doi.org/10.1002/esp.1855
https://doi.org/10.1002/esp.3341
https://doi.org/10.1130/0091-7613(1997)025<0295:ESOCII>2.3.CO;2
https://doi.org/10.1130/0091-7613(1997)025<0295:ESOCII>2.3.CO;2
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001090
https://doi.org/10.1029/2010JF001933
https://doi.org/10.5194/esurf-3-113-2015

	Abstract
	Introduction
	A probabilistic framework
	Development
	Example of application using model data

	Cover development in time and space
	Model derivation
	Time-independent solution
	Temporal evolution of cover within a reach
	System timescales
	Phase shift and gain in response to a cyclic perturbation
	A flood at the Erlenbach


	Discussion
	Model formulation
	Comparison to previous modelling frameworks
	Further implications

	Conclusions
	Data availability
	Appendix A: Perturbation analysis
	Appendix A1: Perturbation of sediment supply
	Appendix A2: Perturbation of transport capacity
	Appendix A3: Summary

	Appendix B: Notation
	Competing interests
	Acknowledgements
	References

