Professor Claire Horwell claire.horwell@durham.ac.uk
Professor
The iron-catalysed surface reactivity and health-pertinent physical characteristics of explosive volcanic ash from Mt. Etna, Italy
Horwell, C.J.; Sargent, P.; Andronico, D.; Lo Castro, M.D.; Tomatis, M.; Hillman, S.E.; Michnowicz, S.A.K.; Fubini, B.
Authors
P. Sargent
D. Andronico
M.D. Lo Castro
M. Tomatis
S.E. Hillman
S.A.K. Michnowicz
B. Fubini
Abstract
Mount Etna is Europe’s largest and most active volcano. In recent years, it has displayed enhanced explosive activity, causing concern amongst local inhabitants who frequently have to live with, and clean up, substantial ashfall. Basaltic volcanic ash is generally considered unlikely to be a respiratory health hazard due to its often coarse nature (with few particles sub-10 μm diameter) and lack of crystalline silica. However, a previous study by the authors showed the capability of basaltic ash to generate the hydroxyl radical, a highly-reactive species which may cause cell damage. That study investigated a single sample of Etna ash, amongst others, with data giving an early indication that the Etnean ash may be uniquely reactive. In this study, we analyse a suite of Etnean samples from recent and historical eruptions. Deposits indicate that Etna’s past history was much more explosive than current activity, with frequent sub-plinian to plinian events. Given the recent increase in explosivity of Etna, the potential hazard of similarly, or more-explosive, eruptions should be assessed. A suite of physicochemical analyses were conducted which showed recent ash, from 2001 and 2002 explosive phases, to be of similar composition to the historical deposits (trachy-basaltic) but rather coarser (< 2.4 c.v.% sub-10 μm material and <11.5 c.v.% sub-10 μm material, respectively), but the potential for post-depositional fragmentation by wind and vehicles should not be ignored. One recent sample contained a moderate number of fibre-like particles, but all other samples were typical of fine-grained ash (blocky, angular with electrostatic or chemical aggregation of finer particles on larger ones). The surface reactivity analyses (Fenton chemistry, on samples from recent eruptions only) showed that Etnean ash is more reactive in hydroxyl radical generation than other basaltic ash, and samples of intermediate composition. This high reactivity suggests that Etnean ash could promote oxidative stress in exposed cells. Therefore, further investigation of the potential toxicity, through cellular tests, is now warranted in order to provide a comprehensive health hazard assessment.
Citation
Horwell, C., Sargent, P., Andronico, D., Lo Castro, M., Tomatis, M., Hillman, S., …Fubini, B. (2017). The iron-catalysed surface reactivity and health-pertinent physical characteristics of explosive volcanic ash from Mt. Etna, Italy. Journal of Applied Volcanology, 6(1), Article 12. https://doi.org/10.1186/s13617-017-0063-8
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 11, 2017 |
Online Publication Date | Aug 17, 2017 |
Publication Date | Aug 17, 2017 |
Deposit Date | Aug 18, 2017 |
Publicly Available Date | Aug 18, 2017 |
Journal | Journal of Applied Volcanology |
Publisher | BioMed Central |
Peer Reviewed | Peer Reviewed |
Volume | 6 |
Issue | 1 |
Article Number | 12 |
DOI | https://doi.org/10.1186/s13617-017-0063-8 |
Public URL | https://durham-repository.worktribe.com/output/1370913 |
Files
Published Journal Article
(1.3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© The Author(s). 2017 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
You might also like
Volcanic air pollution and human health: recent advances and future directions
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search