Dr Ed Pope edward.pope@durham.ac.uk
Honorary Fellow
Damaging sediment density flows triggered by tropical cyclones
Pope, E.L.; Talling, P.J.; Carter, L.; Clare, M.A.; Hunt, J.E.
Authors
Professor Peter Talling peter.j.talling@durham.ac.uk
Professor
L. Carter
M.A. Clare
J.E. Hunt
Abstract
The global network of subsea fibre-optic cables plays a critical role in the world economy and is considered as strategic infrastructure for many nations. Sediment density flows have caused significant disruption to this network in the recent past. These cable breaks represent the only means to actively monitor such flows over large oceanic regions. Here, we use a global cable break database to analyse tropical cyclone triggering of sediment density flows worldwide over 25 yrs. Cable breaking sediment density flows are triggered in nearly all areas exposed to tropical cyclones but most occur in the NW Pacific. They are triggered by one of three sets of mechanisms. Tropical cyclones directly trigger flows, synchronous to their passage, as a consequence of storm waves, currents and surges. Cyclones also trigger flows indirectly, with near-synchronous timing to their passage, as a consequence of peak flood discharges. Last, cyclones trigger flows after a delay of days as a consequence of the failure of large volumes of rapidly deposited sediment. No clear relationship emerges between tropical cyclone activity (i.e. track, frequency and intensity) and the number of sediment density flows triggered. This is a consequence of the short period of observation. However, expansion of the cable network and predicted changes to cyclone activity in specific regions increases the likelihood of increasing numbers of damaging flows.
Citation
Pope, E., Talling, P., Carter, L., Clare, M., & Hunt, J. (2017). Damaging sediment density flows triggered by tropical cyclones. Earth and Planetary Science Letters, 458, 161-169. https://doi.org/10.1016/j.epsl.2016.10.046
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 24, 2016 |
Online Publication Date | Nov 11, 2016 |
Publication Date | Jan 1, 2017 |
Deposit Date | Dec 14, 2016 |
Publicly Available Date | Nov 11, 2017 |
Journal | Earth and Planetary Science Letters |
Print ISSN | 0012-821X |
Electronic ISSN | 1385-013X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 458 |
Pages | 161-169 |
DOI | https://doi.org/10.1016/j.epsl.2016.10.046 |
Public URL | https://durham-repository.worktribe.com/output/1368221 |
Files
Accepted Journal Article
(1.8 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Novel sensor array helps to understand submarine cable faults off West Africa
(2021)
Preprint / Working Paper
Predicting turbidity current activity offshore from meltwater-fed river deltas
(2023)
Journal Article
Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming
(2022)
Journal Article
Longest sediment flows yet measured show how major rivers connect efficiently to deep sea
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search