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Abstract 10 

The global network of subsea fibre-optic cables plays a critical role in the world economy and is 11 

considered as strategic infrastructure for many nations. Sediment density flows have caused 12 

significant disruption to this network in the recent past. These cable breaks represent the only 13 

means to actively monitor such flows over large oceanic regions. Here, we use a global cable break 14 

database to analyse tropical cyclone triggering of sediment density flows worldwide over 25 years. 15 

Cable breaking sediment density flows are triggered in nearly all areas exposed to tropical cyclones 16 

but most occur in the NW Pacific. They are triggered by one of three sets of mechanisms. Tropical 17 

cyclones directly trigger flows, synchronous to their passage, as a consequence of storm waves, 18 

currents and surges. Cyclones also trigger flows indirectly, with near-synchronous timing to their 19 

passage, as a consequence peak flood discharges. Last, cyclones trigger flows after a delay of days as 20 

a consequence of the failure of large volumes of rapidly deposited sediment. No clear relationship 21 

emerges between tropical cyclone activity (i.e. track, frequency and intensity) and the number of 22 

sediment density flows triggered. This is a consequence of the short period of observation. However, 23 



expansion of the cable network and predicted changes to cyclone activity in specific regions 24 

increases the likelihood of increasing numbers of damaging flows.  25 
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1. Introduction 29 

Tropical cyclones are common in many regions of the world and affect nearly all tropical areas 30 

(Emanuel, 2005). Associated with these meteorological phenomena are extreme winds, torrential 31 

rains and subsequent river floods, increased surface run-off and/or landslides, large waves and 32 

damaging storm surges leading to coastal flooding (Peduzzi et al., 2012). An often unrecognised 33 

hazard is that posed to subsea infrastructure by cyclone-triggered sediment density flows.  34 

Sediment density flows (a generic term used here to encompass turbidity currents, debris flows, 35 

hyperpycnal plumes and submarine landslides, etc.)  can travel at speeds of up to 19 ms-1 and runout 36 

for several hundreds of kilometres. These flows can damage critical seafloor infrastructure, such as 37 

that associated with the offshore hydrocarbon industry or subsea telecommunication cable 38 

networks (Carter et al., 2009; Pope et al., 2016). The seafloor telecommunication network currently 39 

carries >95% of global data and internet traffic making it integral to the global economy and 40 

strategic infrastructure for many countries (Carter et al., 2009; Burnett et al., 2013). Determining the 41 

timing and triggering of these flows is important for submarine geohazard assessment, especially 42 

whether their frequency may change as the oceans warm due to predicted climate change (Stocker, 43 

2014). 44 

Multiple triggering mechanisms have been identified for sediment density flows. These include 45 

earthquakes, tsunami and storm wave loading, rapid sediment deposition and oversteepening, 46 



direct plunging of dense river water (hyperpycnal flows) and volcanic activity (Piper and Normark, 47 

2009). However, we have limited understanding of the frequency of flows worldwide or how often 48 

they are triggered by specific mechanisms because their exact timing and character are often 49 

problematic to measure. In most cases where a specific triggering mechanism has been identified, it 50 

has been based on cable breaks or damage to other seafloor infrastructure (e.g. Hsu et al., 2008; 51 

Cattaneo et al., 2012; see Talling et al., 2013 for more detail). This is particularly true of triggering of 52 

sediment density flows by tropical cyclones (Bea et al., 1983; Dengler et al., 1984; Alvarado, 2006; 53 

Carter et al., 2012; Gavey et al., 2016). 54 

Using a global database of cable breaks, here we specifically focus on the role tropical cyclones play 55 

in triggering damaging sediment density flows. Furthering previous spatially and temporally 56 

restricted studies; the use of a global compilation of cable breaks allows the identification of areas 57 

where damaging sediment density flows, triggered by cyclones occur and how frequent these events 58 

have been globally over a 25 year time period.  59 

1.2. Aims 60 

Three main questions are addressed. First, how important are tropical cyclones for causing cable 61 

breaks on a global basis, and in which settings (submarine canyons, etc.) and water depths do 62 

cyclone induced breaks occur? Second, can the mechanisms by which cyclones trigger sediment 63 

density flows be identified from cable breaks? For example, are flows triggered by storm waves and 64 

currents during the tropical cyclone and/or are flows typically delayed and triggered a few days after 65 

the passing of the tropical cyclone (Carter et al., 2012)? Third, is the frequency of cyclone-triggered 66 

sediment density flows and cable breaks likely to change due to projected climate change? 67 

2. Data and methods 68 

2.1. Cable break database 69 



This study is based on non-public, aggregated data supplied by Global Marine Systems Limited (UK) 70 

on a non-disclosure basis. The database contains information on the location of each subsea cable 71 

when it was laid (Fig. 1). It includes other installation information such as seabed type and duration 72 

the cable has been in service. Cable breaks within the database are identified and generally related 73 

to likely causes, i.e. seismic, trawling, anchor, etc. Each ‘break’ refers to a break or failure along a 74 

section of a specific cable. A ‘break’ can range from internal damage of the power conductor or 75 

optical fibres to the complete physical separation of the entire cable assembly. Each recorded 76 

‘break’ may therefore also represent multiple breaks along a single section of cable. The timing of a 77 

break in the database is recorded to the nearest day. 78 

2.2. Tropical cyclone data 79 

2.2.1. Tropical cyclone track data 80 

Historical tropical cyclone track data were obtained from the National Hurricane Center (NHC) 81 

Hurdat-2 “best track” dataset (Landsea et al., 2013). This dataset is an archive compiled every 6 82 

hours (at 0000, 0600, 1200, 1800 UTC) and includes reports of storm position and maximum wind 83 

speeds. 84 

2.2.2. Tropical cyclone characterisation: ECMWF ERA-interim reanalysis data 85 

The global coverage of ocean buoys recording variables such as surface pressure and wave height is 86 

spatially variable, and such data are not always freely available. The same is true of terrestrial 87 

weather stations. Thus to analyse specific tropical cyclone characteristics we used global model data 88 

in order to homogenise data quality. Records of tropical cyclone characteristics came from ERA-89 

Interim global atmospheric reanalysis produced by the European Centre for Medium-Range Weather 90 

Forecasts (Dee et al., 2011). ERA-Interim covers the period from 1 January 1979 onwards, and 91 

continues to be extended forward in near-real time. 3-hourly estimates of surface pressure (Pa), 92 



significant wave height (m), total precipitation (m) and surface runoff (m) data were obtained from 93 

the ERA-interim model. These data were gridded at a spatial resolution of 0.125° x 0.125°. 94 

2.3. Comparison of cable break and tropical cyclone databases  95 

All cable breaks within the database attributed to the following causes were included in our analysis: 96 

earthquakes, landslides, chafe under current action, other natural causes, and unknown causes. 97 

Among these categories, cable breaks with a known cause unrelated to tropical cyclones were 98 

removed, such as those due to earthquakes (Pope et al., 2016). A tropical cyclone was attributed to 99 

be the cause of a sediment density flow if the cable break coincided with the passing of a tropical 100 

cyclone according to the best-track data and the ERA-interim data, or occurred within 14 days of the 101 

end of a related river discharge peak if no other apparent triggers could be found.  102 

Where a tropical cyclone appears to have triggered a sediment density flow, local environmental 103 

variables were extracted from the ERA-Interim data. Where a cable break occurred beyond the 104 

continental shelf edge, surface pressure and significant wave height measurements were measured 105 

at the nearest point on the shelf edge. Where a cable break occurred on the shelf itself, surface 106 

pressure and significant wave height were measured at the location of the cable break. Total 107 

precipitation was measured at the nearest terrestrial location to each cable break; the maximum 108 

distance was 260 km on the Mississippi Fan (mean distance of all the breaks; 95 km). 109 

Breaks were attributed to by specific triggers depending on the timing of the break itself. A cable 110 

break was specified as Type 1 if it occurred during the initial passing of the tropical cyclone and 111 

coincided with rising or peaking significant wave heights, or a drop in surface pressure (Fig. 2). A 112 

Type 2 cable break occurred after the peak in significant wave height, but coincident with the peak 113 

in river flood discharges (Fig. 2). A Type 3 cable break followed the peak in cyclone-related river 114 

flood discharge (Fig. 2). The time limit set for this was 14 days as a consequence of the variable flood 115 

hydrographs, which can occur (Williams, 1969). Flood hydrographs can vary between different 116 



basins as a consequence of the different shape and size of individual basins but also as a 117 

consequence of differing relief and land-use patterns (Woods and Sivapalan, 1999). They can also 118 

vary in shape in the same basin at different times according to different antecedent conditions. It 119 

must also be acknowledged that as time between the hydrograph peak and the cable break 120 

occurring increases, it become increasingly difficult to directly link the occurrence of a cable break to 121 

the passage of the tropical cyclone rather than a separate mechanism. However, no obvious trigger, 122 

such as an earthquake was observed in these cases. 123 

3. Results 124 

Globally, between January 1989 and January 2015, there were 35 cable breaks that could potentially 125 

be attributed to tropical cyclone activity (Table 1). Cables broke in water depths of between 20 m 126 

and 6120 m, of which 19 cables broke at water depths >2000 m. The largest number of breaks was 127 

found offshore Taiwan; here 20 cable breaks were associated with tropical cyclones (Fig. 3a). There 128 

were also 3 cable breaks off Japan and 1 off the Philippines (Fig. 3a). In the Indian Ocean, tropical 129 

cyclone-related breaks were found offshore Madagascar (1 break) and La Reunion (6 breaks; Fig. 3b). 130 

Elsewhere 3 breaks were found to have occurred in the Caribbean Sea and 1 break in the Eastern 131 

Pacific (Fig. 3c). 132 

The 35 cable breaks in the dataset were caused by 22 separate tropical cyclones. Multiple breaks 133 

were caused by three tropical cyclones. Typhoon Sinlaku was the potential cause of 2 cable breaks 134 

off East Taiwan in 2002. Cyclone Gamede was associated with 2 cable breaks offshore La Reunion in 135 

2007. Typhoon Morakot resulted in 10 cable breaks. This number differs from previous studies of 136 

Typhoon Morakot, which recorded “at least nine” cable breaks (Carter et al., 2012; Gavey et al., 137 

2016) as a consequence of additional data. 138 

The 35 cable breaks potentially associated with tropical cyclones are found in several distinct 139 

environmental settings (Table 1). The largest number of cable breaks (22) are found in or closely 140 



associated with submarine canyons. Most of these are offshore Taiwan (19); others occurred 141 

offshore the Philippines and Madagascar. The second most common location (9) for cable breaks is 142 

close to river mouths or on associated deep-sea fans where turbidity currents are known to occur 143 

(i.e. the Mississippi Fan, the Yellahs Fan). Of these, 6 are located within the sediment wave fields of 144 

the Mafate and Saint-Denis Fans offshore La Reunion. The remainder of cable breaks (4) occurred on 145 

open continental shelves and deep sea fans.  146 

Assuming that each cable-breaking flow originated at the head of their associated submarine canyon 147 

or at the mouth of close-by rivers, cables were broken at distances of between 1 and 384 km from 148 

their source. The environmental settings of the cable breaks suggests that the majority of cable-149 

breaking sediment flows triggered by tropical cyclones began in areas where large volumes of 150 

sediment had previously accumulated, such as in the heads of submarine canyons. They also suggest 151 

that most damaging flows were channelized. Channelization likely increased the probability that the 152 

flow would have sufficient power to break a cable, thus increasing the likelihood of detection in the 153 

cable break database.       154 

The timing of the 35 cable breaks relative to the passing of a tropical cyclone is highly variable (Table 155 

1). Peaks in significant wave height and drops in surface pressure as the tropical cyclone passed 156 

correspond to 4 cable breaks; each break was associated with an individual storm. Fig. 4 shows the 157 

timing of a cable break coincident with the initial passing of Severe Tropical Storm Utor offshore 158 

Taiwan in 2001. Tropical cyclone precipitation-related peaks in river discharge were associated with 159 

13 cable breaks (Fig. 5). Both breaks associated with Cyclone Gamede were related to river 160 

discharge. Most cable breaks (18) occurred following a delay from peak flood discharge of at least 2 161 

days (Figs. 6 and 7). The longest delay was 12 days after river discharge had returned to pre-cyclone 162 

levels (20 days after the peak discharge). Cable breaks associated with delays were associated with 9 163 

tropical cyclones. 164 

4. Discussion 165 



4.1. Tropical cyclone triggering of sediment density flows 166 

 4.1.1. Type 1 breaks: Direct and synchronous triggering of sediment density flows 167 

The cable break database shows that sediment density flows can be triggered (Type 1) during the 168 

initial passing of a tropical cyclone (Figs. 4 and 7b). We attribute a Type 1 break to slope failure and 169 

run-out triggered most likely by dynamic loading of the seafloor. Dynamic loading is the result of 170 

storm waves, storm surges or internal waves occurring during a tropical cyclone (Prior et al., 1989; 171 

Wright and Rathje, 2003). These breaks are attributed to dynamic loading-triggered sediment 172 

density flows and not wave action alone because the breaks occur well below the wave base; at 173 

depths greater than 1200 m (see Table 1). However, the lack of sequential breaks as seen in other 174 

studies (Carter et al., 2012; Cattaneo et al., 2012; Gavey et al., 2016) means we cannot rule out other 175 

causes. 176 

Storm surges are generated by a combination of wind stresses and reduced atmospheric pressure 177 

(Karim and Mimura, 2008). At the continental shelf edge, the advance of a storm surge can exert 178 

large hydrodynamic pressures on the seafloor and elevate subsurface pore pressures (Zhang et al., 179 

2015). Such transient changes can promote slope instability and its run-out (Bea et al., 1983; Wright 180 

and Rathje, 2003).  181 

Storm waves can trigger sediment density flows through two processes. First, they can alter pore 182 

pressures through dynamic loading. Passing wave crests increase pore pressures, while wave troughs 183 

generate seepage pressures (Seed and Rahman, 1978). Where sediment lacks rigidity or has low 184 

permeability, pore water pressures are able to progressively build or migrate laterally through the 185 

sediment. Over time this can cause liquefaction or the rupture of inter-particle cohesive bonds (Puig 186 

et al., 2008) leading to sediment failure (Lamb and Parsons, 2005). Second, the orbital motion of the 187 

water particles can impart horizontal shear on the seabed (Jeng and Seymour, 2007). Where the 188 

sediment shear strength is insufficient to resist the shear stress, failure and sediment transport can 189 



occur in the form of plane shear, liquefied flow sliding or slope failure (Lambrechts et al., 2010). 190 

Horizontal shear stresses induced by cyclone-forced currents can induce failure of weak sediments in 191 

the same way (Alford, 2003).  192 

The limited number (4 breaks) of Type 1 events compared to other break types suggests that 193 

dynamic loading itself does not trigger large numbers of long run-out and damaging sediment 194 

density flows. These processes are therefore likely to be more important for the entrainment and 195 

deposition of shelf sediments (Sullivan et al., 2003). Failures of the deposited sediment may then 196 

result from other triggers. 197 

4.1.2. Type 2 breaks: Indirect and near-synchronous triggering 198 

Type 2 cable breaks were three times more common (13 breaks) during the passage, or after the 199 

peak of, a tropical cyclone, but after coincident peaks in wave height, surface pressure and rainfall 200 

(Fig. 7c). Type 2 breaks are related to sediment density flows triggered by either cumulative effects 201 

(rather than the peak event as in Type 1) of storm wave/current activity, or indirectly as a 202 

consequence of peak river flood discharges resulting from tropical cyclone precipitation. Peak flood 203 

discharges often coincide with continued storm wave activity; hence isolation of a specific 204 

mechanism for Type 2 breaks is difficult from the cable break database alone. Typhoon Morakot (Fig. 205 

5; Carter et al., 2012) is the best known example of a peak flood discharge trigger for a sediment 206 

density flow that lagged behind the peak intensity of the cyclone itself. Sufficiently large flood 207 

discharges can trigger sediment density flows either through the generation of hyperpycnal plumes 208 

(Parsons et al., 2001; Mulder et al., 2003; Piper and Normark, 2009) or through rapid deposition and 209 

subsequent remobilisation of river plume sediments (Parsons et al., 2001; Clare et al., 2016; Gavey 210 

et al., 2016). In both cases the initial flow entrains water and sediment; thus giving the flow 211 

sufficient energy to break a subsea cable (Fig. 7c). 212 

4.1.3. Type 3 breaks: Indirect and delayed triggering 213 



The largest number of cable breaks (18), occurred shortly after the passage of a tropical cyclone. 214 

Here, we suggest that these Type 3 breaks relate to processes that lag behind the passage of a 215 

tropical cyclone, but are still related to its residual effects (Figs 6 and 7d). Such lagged-triggering may 216 

be related to the deposition of large volumes of sediment during and immediately after a storm. 217 

Alternatively sediment at the shelf break or in canyon heads may have been destabilised by the 218 

cumulative effects of surface gravity waves and internal tide/wave effects (Lee et al., 2009). 219 

Storm wave/current action and flood discharges can transport and deposit large volumes of 220 

sediment at the shelf edge or in canyon heads (Puig et al., 2004; Liu et al., 2009). The rate of 221 

deposition may depend on; (1) the extent to which the water column on the continental shelf has 222 

been stirred up by the passage of the cyclone (Sullivan et al., 2003) and; (2) the response and size of 223 

the nearby river basin (Chen et al., 2012). These aspects can lead to delayed failures due to 224 

oversteepening and loading by rapidly deposited sediment, and inhibited dissipation of excess pore 225 

pressures  (Clare et al., 2016; Figs 6 and 7d). 226 

Liquefaction related to storm waves may also cause delayed failures. Laboratory and field tests 227 

focussing on earthquake shaking have shown that soil liquefaction beneath silt laminae, beds or 228 

lenses present in sand layers can lead to the generation of water film layers (Scott and Zuckerman, 229 

1972; Kokusho and Kojima, 2002). These water films can persist for several days after an earthquake, 230 

acting as sliding surfaces for delayed sediment failures (Özener et al., 2009). If storm waves cause 231 

liquefaction of seafloor sediments by the processes outlined in Section 4.1.1, then it is possible for 232 

water film layers to be generated. Delayed failures can subsequently occur following these water 233 

film layers.  234 

4.1.4. Do delayed cable breaks result from other factors? 235 



We now consider whether delayed cable breaks result from either the time taken for a sediment 236 

density flow to reach a cable or whether the flow is in fact triggered by a process unrelated to the 237 

tropical cyclone. 238 

The time taken for a flow to reach a cable and be recorded as a cable break has inflated the delay 239 

times given. A significant number of cable breaks (12) were located more than 100 km from the 240 

likely initiation point for sediment density flows. Given reasonable flow speeds (Carter et al., 2012; 241 

Cattaneo et al., 2012; Gavey et al., 2016) and the distances between the likely point of initiation and 242 

the cable break, a delay of up to 2 days (48 hours) is likely. The format of the cable break database 243 

may contribute to this delay, as it only records the timing of each break to the nearest day. 244 

Quantifying whether a cyclone triggered a sediment density flow following a long delay, i.e. more 245 

than 7 days, is more difficult. Prior to this study, delayed triggering of sediment density flows was 246 

observed in several locations (Hsu et al., 2008; Carter et al., 2012; Clare et al., 2016). These studies 247 

identified delays between peak discharge and the occurrence of a flow of between a few hours to a 248 

week. There are, however, no measurements of changing subsurface properties up until eventual 249 

failure in these previous studies or in this study. It is therefore difficult to precisely define the point 250 

at which deposited sediment will no longer fail as a consequence of cyclone forcing, and thus require 251 

an additional trigger. This should be the subject of future studies.  252 

4.2. Will climate change make tropical cyclone triggered sediment density flows more likely? 253 

Understanding whether the frequency of cyclone-triggered sediment density flows will increase as a 254 

consequence of climate change faces a number of challenges. First, possible trends in tropical 255 

cyclone activity remain uncertain as a consequence of the short period of accurate observation and 256 

the large amount of natural inter-annual variability (Knutson et al., 2010). This variability contributes 257 

to uncertainty in predictive modelling of different warming scenarios (Sugi et al., 2009; Knutson et 258 

al., 2010). Second, the number of fibre-optic cables and the diversity of cable locations have 259 



increased due to growing reliance on this communications network (Carter et al., 2014; Pope et al., 260 

2016). These factors complicate the interpretation of whether changes to the number of observed 261 

tropical cyclone triggered flows are a consequence of changes to tropical cyclone activity or to 262 

hazard exposure of the cable network. It is therefore difficult to make projections of trends in the 263 

number of cable breaks. One exception is the northwestern Pacific (Mei and Xie, 2016). Here, 264 

increasing cyclone intensity (Emanuel, 2005), poleward migration of storm tracks (Kossin et al., 265 

2014) and slower tropical cyclone passage (Lee et al., 2015) have been linked to increased sediment 266 

discharge to the continental shelf (Lee et al., 2015; Mei and Xie, 2016). The likelihood that cyclones 267 

will trigger sediment density flows or at least precondition slopes to fail, triggered by other 268 

processes (e.g. earthquakes; Gavey et al., 2016; Pope et al., 2016) is thereby enhanced. Increased 269 

tropical cyclone activity does therefore appear to increase the likelihood of flow triggering. 270 

5. Conclusions 271 

Tropical cyclones trigger cable-breaking sediment density flows in almost all areas where cyclones 272 

occur globally. Cyclone-forced flows are particularly common around South East Asia, especially off 273 

Taiwan and the Philippines. Flows can be triggered by dynamic loading of the seabed through storm 274 

surge and storm-wave action, but are more commonly the result of fluvial flood discharge. 275 

Importantly, they are also triggered indirectly after a tropical cyclone has passed when large 276 

volumes of rapidly deposited fluvial and shelf sediment are prone to failure. Such deposits may be 277 

subject to delayed failure to form cable-damaging flows. It is unclear whether climate change will 278 

affect the global frequency of tropical cyclone triggered flows, but it is likely to increase the number 279 

of cable breaks in major cable corridors such as off Taiwan. 280 
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Figures 468 

 469 

Fig. 1. Map of the submarine cable network used in this study. 470 

  471 



 472 

Fig. 2. Idealised schematic of the relationship between environmental variables during the passage 473 

of a tropical cyclone and the timing of a cable break. Type 1 breaks are defined as occurring with 474 

rising and peaking significant wave heights and storm driven flows or the drop in surface pressure 475 

associated with the passage of a tropical cyclone. Type 2 occur after the peak in significant wave 476 

height but associated with the peak in river flood discharges. Type 3 occur if the break was within 14 477 

days of the peak in cyclone related river flood discharge. 478 



 479 

Fig. 3. Locations of submarine cable breaks inferred to be associated with tropical cyclones. a) Cable 480 

breaks offshore Japan, Taiwan and the Philippines. b) Cable breaks offshore Madagascar and La 481 

Reunion. c) Cable breaks offshore the USA, Central America and the Caribbean Islands. Bathymetry 482 

and topographic data were obtained from the GEBCO database (Becker et al., 2009). 483 



 484 

Fig. 4. An example of a Type 1 cable break that is synchronous with typhoon induced wave height 485 

increases. Changes in rainfall, wave height and surface air pressure during a tropical cyclone and the 486 

relative timing of cable breaks offshore Taiwan in 2001. ERA-Interim data for the cable break 487 

occurring offshore Taiwan during the passage of Severe Storm Utor, 2001. Green bar represents the 488 

time when the cable broke.  489 



 490 

Fig. 5. An example of Type 2 and 3 cable breaks. Environmental conditions for cable breaks occurring 491 

at the peak flood discharge resulting from the passing of a tropical cyclone. ERA-Interim data for 492 

total precipitation, significant wave height and surface pressure displayed are for offshore Taiwan at 493 

the head of the Gaoping Canyon for Typhoon Morakot in 2009. River discharge for the Gaoping River 494 

during Typhoon Morakot is also displayed (Carter et al., 2012). Green bars represent the time when 495 

cables were broken. The first set of cable breaks represents a Type 2 break. The second and third 496 

sets of cable breaks represent Type 3 breaks. 497 

 498 



 499 

Fig. 6. Examples of Type 3 breaks. Environmental conditions for cable breaks occurring after the 500 

reduction in peak flood discharge following the passing of a tropical cyclone. a) ERA-Interim data for 501 

total precipitation, significant wave height and surface pressure displayed are for the Mississippi 502 

Delta following the passing of Tropical Storm Fay, Hurricane Gustav and Hurricane Ike in 2008. River 503 

discharge data is from a river station at Baton Rouge on the Mississippi. b) ERA-interim data for total 504 

precipitation, significant wave height and surface pressure displayed are for Taiwan following the 505 

passing of Typhoon Mindulle in 2004. River discharge data is from the Choshui River (Lu et al., 2008). 506 

Green bar represents the time when the cable break occurred. 507 

 508 



 509 

Fig. 7. Illustration of the various hypotheses for the triggering of sediment density flows during and 510 

after cyclones. a) Sediment delivery and transport during non-tropical cyclone conditions. b) Type 1 511 

event triggering mechanisms. c) Type 2 event triggering mechanisms. d) Type 3 event triggering 512 

mechanisms.  513 



Tables 514 

 515 

Table 1. Tropical cyclone triggered cable breaks. Depending on setting, the distance from likely 516 

source is defined as the approximate distance between the cable break and the canyon head, the 517 

river mouth or the shelf edge in the case of those occurring on the continental slope. 518 


