I. Tomašek
Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface
Tomašek, I.; Horwell, C.J.; Bisig, C.; Damby, D.E.; Comte, P.; Czerwinskid, J.; Petri-Fink, A.; Clift, M.J.D.; Drasler, B.; Rothen-Rutishauser, B.
Authors
Professor Claire Horwell claire.horwell@durham.ac.uk
Professor
C. Bisig
D.E. Damby
P. Comte
J. Czerwinskid
A. Petri-Fink
M.J.D. Clift
B. Drasler
B. Rothen-Rutishauser
Abstract
Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited. The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm2 and 0.39 ± 0.09 μg/cm2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO2). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses. Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of volcanic ash and gasoline vehicle exhaust has a limited short-term biological impact to an advanced lung cell in vitro model.
Citation
Tomašek, I., Horwell, C., Bisig, C., Damby, D., Comte, P., Czerwinskid, J., …Rothen-Rutishauser, B. (2018). Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface. Environmental Pollution, 238, 977-987. https://doi.org/10.1016/j.envpol.2018.01.115
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 31, 2018 |
Online Publication Date | Feb 16, 2018 |
Publication Date | Jul 1, 2018 |
Deposit Date | Feb 5, 2018 |
Publicly Available Date | May 10, 2018 |
Journal | Environmental Pollution |
Print ISSN | 0269-7491 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 238 |
Pages | 977-987 |
DOI | https://doi.org/10.1016/j.envpol.2018.01.115 |
Public URL | https://durham-repository.worktribe.com/output/1367265 |
Files
Published Journal Article
(2.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
You might also like
Volcanic air pollution and human health: recent advances and future directions
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search