Mark Kincey m.e.kincey@durham.ac.uk
PGR Student Doctor of Philosophy
Quantifying erosion of at risk archaeological sites using repeat terrestrial laser scanning
Kincey, M.E.; Gerrard, C.M.; Warburton, J.
Authors
Professor Christopher Gerrard c.m.gerrard@durham.ac.uk
Professor
Professor Jeff Warburton jeff.warburton@durham.ac.uk
Professor
Abstract
Effective heritage management is reliant on an understanding of the range of current and potential future threats facing archaeological sites. Despite this, the processes leading to the loss of in situ archaeological remains are still poorly understood, including the rates, timing and drivers of surface erosion. This issue is particularly significant for abandoned historical metal mines in upland landscapes, where erosion rates are typically higher due to a combination of the unstable character of the archaeological deposits and the increased effectiveness of surface erosion processes. This study utilises repeat terrestrial laser scanning (TLS) to monitor the changing condition of two adjacent lead mines in the North Pennines, UK, over an 18 month period. The high spatial and temporal resolution of the TLS data, in conjunction with land cover characteristics derived from an unmanned aerial vehicle (UAV) survey, allows the detailed quantification of the causes and impacts of surface change. The results demonstrate that stream bank erosion is the process responsible for the most widespread and archaeologically significant damage, although localised gullying of mine waste heaps resulted in the largest volumetric loss of material (> 160 m3). Temporal variation in the erosion of upland archaeological sites is highly episodic, being dominated (> 70%) by high magnitude but low frequency storm events. These results provide invaluable information regarding the causes and impacts of erosion of upland archaeological remains, as well as establishing a proven methodology which can now be applied to archaeological sites in other landscape contexts.
Citation
Kincey, M., Gerrard, C., & Warburton, J. (2017). Quantifying erosion of at risk archaeological sites using repeat terrestrial laser scanning. Journal of Archaeological Science: Reports, 12, 405-424. https://doi.org/10.1016/j.jasrep.2017.02.003
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 2, 2017 |
Online Publication Date | Apr 4, 2017 |
Publication Date | Apr 4, 2017 |
Deposit Date | Apr 5, 2017 |
Publicly Available Date | Apr 4, 2018 |
Journal | Journal of archaeological science, reports. |
Print ISSN | 2352-409X |
Electronic ISSN | 2352-4103 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 12 |
Pages | 405-424 |
DOI | https://doi.org/10.1016/j.jasrep.2017.02.003 |
Public URL | https://durham-repository.worktribe.com/output/1360946 |
Files
Accepted Journal Article
(1.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
The transport and mass balance of fallout radionuclides in Brotherswater, Cumbria (UK)
(2019)
Journal Article
Very large convergent multi-fluted glacigenic deposits in the NW Highlands, Scotland
(2019)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search