Dr Peter Wyper peter.f.wyper@durham.ac.uk
Associate Professor
A universal model for solar eruptions
Wyper, Peter F.; Antiochos, Spiro K.; DeVore, C. Richard
Authors
Spiro K. Antiochos
C. Richard DeVore
Abstract
Magnetically driven eruptions on the Sun, from stellar-scale coronal mass ejections to small-scale coronal X-ray and extreme-ultraviolet jets, have frequently been observed to involve the ejection of the highly stressed magnetic flux of a filament. Theoretically, these two phenomena have been thought to arise through very different mechanisms: coronal mass ejections from an ideal (non-dissipative) process, whereby the energy release does not require a change in the magnetic topology, as in the kink or torus instability; and coronal jets from a resistive process involving magnetic reconnection. However, it was recently concluded from new observations that all coronal jets are driven by filament ejection, just like large mass ejections. This suggests that the two phenomena have physically identical origin and hence that a single mechanism may be responsible, that is, either mass ejections arise from reconnection, or jets arise from an ideal instability. Here we report simulations of a coronal jet driven by filament ejection, whereby a region of highly sheared magnetic field near the solar surface becomes unstable and erupts. The results show that magnetic reconnection causes the energy release via ‘magnetic breakout’—a positive-feedback mechanism between filament ejection and reconnection. We conclude that if coronal mass ejections and jets are indeed of physically identical origin (although on different spatial scales) then magnetic reconnection (rather than an ideal process) must also underlie mass ejections, and that magnetic breakout is a universal model for solar eruptions.
Citation
Wyper, P. F., Antiochos, S. K., & DeVore, C. R. (2017). A universal model for solar eruptions. Nature, 544(7651), 452-455. https://doi.org/10.1038/nature22050
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 24, 2017 |
Online Publication Date | Apr 26, 2017 |
Publication Date | Apr 26, 2017 |
Deposit Date | May 1, 2017 |
Publicly Available Date | Oct 26, 2017 |
Journal | Nature |
Print ISSN | 0028-0836 |
Electronic ISSN | 1476-4687 |
Publisher | Nature Research |
Peer Reviewed | Peer Reviewed |
Volume | 544 |
Issue | 7651 |
Pages | 452-455 |
DOI | https://doi.org/10.1038/nature22050 |
Public URL | https://durham-repository.worktribe.com/output/1359097 |
Files
Accepted Journal Article
(401 Kb)
PDF
You might also like
Interchange reconnection dynamics in a solar coronal pseudo-streamer
(2023)
Journal Article
Plasmoids, Flows, and Jets during Magnetic Reconnection in a Failed Solar Eruption
(2023)
Journal Article
The Imprint of Intermittent Interchange Reconnection on the Solar Wind
(2022)
Journal Article
Comparison of magnetic energy and helicity in coronal jet simulations
(2023)
Journal Article
The Dynamic Structure of Coronal Hole Boundaries
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search