Huizhe Yang
Projected Pupil Plane Pattern: an alternative LGS wavefront sensing technique
Yang, Huizhe; Bharmal, Nazim A.; Myers, Richard M.
Authors
Dr Nazim Bharmal n.a.bharmal@durham.ac.uk
Senior Adaptive Optics Scientist
Richard Myers r.m.myers@durham.ac.uk
Emeritus Professor
Abstract
We have analysed and simulated a novel alternative Laser Guide Star (LGS) configuration termed Projected Pupil Plane Pattern (PPPP), including wavefront sensing and the reconstruction method. A key advantage of this method is that a collimated beam is launched through the telescope primary mirror, therefore the wavefront measurements do not suffer from the effects of focal anisoplanatism. A detailed simulation including the upward wave optics propagation, return path imaging, and linearized wavefront reconstruction has been presented. The conclusions that we draw from the simulation include the optimum pixel number across the pupilN = 32, the optimum number of Zernike modes (which is 78), propagation altitudes h1 = 10 km and h2 = 20 km for Rayleigh scattered returns, and the choice for the laser beam modulation (Gaussian beam). We also investigate the effects of turbulence profiles with multiple layers and find that it does not reduce PPPP performance as long as the turbulence layers are below h1. A signal-to-noise ratio analysis has been given when photon and read noise are introduced. Finally, we compare the PPPP performance with a conventional Shack–Hartmann Wavefront Sensor in an open loop, using Rayleigh LGS or sodium LGS, for 4-m and 10-m telescopes, respectively. For this purpose, we use a full Monte Carlo end-to-end AO simulation tool, Soapy. From these results, we confirm that PPPP does not suffer from focus anisoplanatism.
Citation
Yang, H., Bharmal, N. A., & Myers, R. M. (2018). Projected Pupil Plane Pattern: an alternative LGS wavefront sensing technique. Monthly Notices of the Royal Astronomical Society, 477(4), 4443-4453. https://doi.org/10.1093/mnras/sty926
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 3, 2018 |
Online Publication Date | Apr 12, 2018 |
Publication Date | Jul 11, 2018 |
Deposit Date | Jun 7, 2018 |
Publicly Available Date | Jun 8, 2018 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 477 |
Issue | 4 |
Pages | 4443-4453 |
DOI | https://doi.org/10.1093/mnras/sty926 |
Public URL | https://durham-repository.worktribe.com/output/1357636 |
Files
Published Journal Article
(2.1 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
Projected Pupil Plane Pattern (PPPP) with artificial Neural Networks
(2019)
Journal Article
Laboratory demonstration of single-camera PPPP wavefront sensing using neural networks
(2024)
Journal Article
On-sky results for the integrated microlens ring tip-tilt sensor
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search