
MNRAS 477, 4443–4453 (2018) doi:10.1093/mnras/sty926
Advance Access publication 2018 April 12

Projected Pupil Plane Pattern: an alternative LGS wavefront sensing
technique

Huizhe Yang,‹ Nazim A. Bharmal and Richard M. Myers
Centre for Advanced Instrumentation, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK

Accepted 2018 April 3. Received 2018 March 28; in original form 2017 November 23

ABSTRACT
We have analysed and simulated a novel alternative Laser Guide Star (LGS) configuration
termed Projected Pupil Plane Pattern (PPPP), including wavefront sensing and the reconstruc-
tion method. A key advantage of this method is that a collimated beam is launched through the
telescope primary mirror, therefore the wavefront measurements do not suffer from the effects
of focal anisoplanatism. A detailed simulation including the upward wave optics propagation,
return path imaging, and linearized wavefront reconstruction has been presented. The conclu-
sions that we draw from the simulation include the optimum pixel number across the pupil
N = 32, the optimum number of Zernike modes (which is 78), propagation altitudes h1 = 10 km
and h2 = 20 km for Rayleigh scattered returns, and the choice for the laser beam modulation
(Gaussian beam). We also investigate the effects of turbulence profiles with multiple layers
and find that it does not reduce PPPP performance as long as the turbulence layers are below
h1. A signal-to-noise ratio analysis has been given when photon and read noise are introduced.
Finally, we compare the PPPP performance with a conventional Shack–Hartmann Wavefront
Sensor in an open loop, using Rayleigh LGS or sodium LGS, for 4-m and 10-m telescopes,
respectively. For this purpose, we use a full Monte Carlo end-to-end AO simulation tool,
Soapy. From these results, we confirm that PPPP does not suffer from focus anisoplanatism.
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1 IN T RO D U C T I O N

As the size of telescopes increases, the correction for atmospheric
turbulence using Adaptive Optics (AO) becomes more critical to
achieve diffraction-limited performance. Laser Guide Stars (LGSs)
are commonly used to sense the distortion of an optical beam travel-
ling in the Earth’s atmosphere without the need for a bright, natural
reference source. There are two varieties of LGSs, termed Rayleigh
and Sodium LGSs. A Rayleigh LGS is created by propagating a
beam into the atmosphere and observing the light backscattered
from molecules in the atmosphere. As the atmospheric air pressure
decreases with altitude, the scattered return also decreases, which
limits the altitude of Rayleigh LGS to around 20–25 km (Thomp-
son 1992). More commonly, LGSs are created using a sodium laser
which is used to excite sodium atoms in the mesospheric sodium
layer (around 90 km) causing them to emit light. For both types
of LGSs, especially Rayleigh LGSs, a main difficulty is that for
high-altitude turbulence layers, the patch of turbulence observed
by the LGS will be smaller than that observed by the astronomical
scientific target due to the finite LGS altitude. This so-called focus
anisoplanatism becomes more pronounced for larger telescope di-

�
E-mail: huizhe.yang@durham.ac.uk

ameters, such as the proposed next-generation optical ground-based
extremely large telescopes (ELTs) with primary mirror diameters
of over 30 m. The wavefront error (WFE) caused by focus aniso-
planatism can reach ∼155 nm rms (root mean square) on the 10-m
Keck telescope, Hawaii, US (Bouchez 2004), and over 300 nm for
ELTs.

Laser tomography AO (LTAO) has been developed to mitigate
the LGS focus anisoplanatism. Here, several LGSs are generated
simultaneously at different positions in the sky. Each LGS is associ-
ated with a dedicated wavefront sensor (WFS), and measurements
from all WFSs are combined to estimate the 3D turbulence. Take
the Keck 10-m telescope as an example again, if seven guide stars
are used, the focus-anisoplanatism error can be reduced to ∼50 nm
rms (Gavel 2007). According to Hardy (1988), the WFE caused by
focus anisoplanatism can be reduced to (1/NLGS)5/6 (where NLGS is
the number of LGSs) by using multiple LGSs. However the LTAO
complexity and expense scale with the number of LGSs used.

Here, we adopt a new alternative LGS configuration proposed
by Buscher, Love & Myers (2002) called Projected Pupil Plane
Pattern (PPPP) and its associated wavefront sensing method. The
key features of PPPP are that a parallel laser beam is projected from
the full primary aperture and that sensing takes place on the upward
path. The method relies on an observable modulation of the scattered
intensity by turbulence-induced phase distortions during upward
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propagation of the laser beam. Compared to LTAO, PPPP does not
require multiple LGSs. In addition, as a broad collimated laser beam
is projected instead of a focused LGS, the safety hazards for aircraft
and satellite are reduced significantly. Similar scheme can also be
used for cophasing across segment gaps for large telescopes with
primary mirrors based on an assembly of a few large segments, such
as the Giant Magellan Telescope (Tuthill 2016).
In this paper, we demonstrate the feasibility of the PPPP method
and investigate its performance under different conditions on the 4-
m William Herschel Telescope (WHT), La Palma. In Section 2,
we introduce the PPPP theory and analyse the signal in the
spatial-frequency domain and the high-order effect due to the non-
linearities from linearization of TIE (transport-of-intensity equa-
tion) and TWE (transport-of-wavefront equation). In Section 3, we
present the PPPP simulation modelling including the upward wave
optics propagation, return path imaging, and linearized wavefront
reconstruction. In Section 4, we present the performance in terms of
different PPPP parameters and provide a suitable choice for these
parameters. We also analyse different turbulence profiles and pro-
vide a signal-to-noise ratio (SNR) analysis when photon and read
noise are added. In addition, we compare the performance of PPPP
and Shack–Hartmann (SH) WFSs with Rayleigh and sodium LGSs
for 4-m and 10-m telescopes using an AO simulation tool. In Sec-
tion 5, we draw our conclusions.

2 PPPP THEORY

Under the paraxial (Fresnel) condition, a slowly varying electro-
magnetic wave u(�r, z) = I 1/2(�r, z) exp (jφ) (where I (�r, z) is the
intensity and φ is turbulence-introduced phase) satisfies

(2jk∂z + ∇2)u(�r, z) = 0, (1)

where ∂z = ∂/∂z, k = 2π /λ is the wavenumber, and ∇2 = ∂2
x + ∂2

y .
Equation (1) is equivalent to the following pair of equations for the
intensity I and phase φ,

k∂zI = −∇ · (I∇φ
)
, (2)

2k∂zφ = −|∇φ|2 + I−1/2∇2(I 1/2). (3)

Equation (2) is the TIE and equation (3) is the TWE (Teague 1983).
The TIE can be approximated as (Roddier 1988),

k
I2 − I1

h2 − h1
= −∇ · (I0∇φ

) = −∇I0 · ∇φ − I0∇2φ, (4)

where I0, I1, and I2 are the intensity patterns at the propagation
distances 0, h1, and h2 correspondingly. Given I0, I1, and I2, we can
retrieve the phase φ except piston according to equation (4). The
linear reconstruction method we use is proposed by Gureyev and
Nugent (1996) (see Section 3.3).

The basic set-up for PPPP is illustrated in Fig. 1. A laser beam is
expanded to fill the pupil of the telescope and propagates as a colli-
mated beam upwards through the atmosphere. When the laser pulse
reaches an altitude of h1, a snapshot of the Rayleigh backscattered
radiation is taken with a camera conjugate at h1, which will show
a disc of illumination corresponding to the telescope pupil (i.e. I1).
When the pulse reaches an altitude of h2, a second snapshot is taken
with a camera conjugate at h2 (perhaps using the same camera with
optical modulation between the two planes as in a curvature WFS
set-up). With the obtained I1 and I2, we can retrieve the turbulence
phase φ.

Telescope

Camera

Laser

1h

2h

Figure 1. Schematic diagram of PPPP.

Figure 2. This is the PSD of ∇φ, ∇2φ, and ∇φ + ∇2φ. φ is a sine wave. The
cross-over is around 0.15 m−1, which represents ∼6.6 m in spatial domain.

2.1 PPPP signal

From equation (4), it is easy to note that the PPPP signal (I2 − I1) is
proportional to h2 − h1 and the wavelength of the laser. Moreover,
the magnitude of ∇I0 · ∇φ and I0∇2φ determines the PPPP signal.
Now let us analyse the relative importance of these two terms on
the right-hand side of equation (4). We perform a Fourier transform
on ∇I0 · ∇φ and I0∇2φ to analyse their relative importance in the
spatial-frequency domain. F (∇I0 · ∇φ) equals F (∇I0) ∗ F (∇φ)
and F (I0∇2φ) equals F (I0) ∗ F (∇2φ) (∗ represents convolution).
According to the Gureyev and Nugent (1996) linear reconstruction,
I0 is slowly changing inside a finite illuminated aperture � and
smoothly approaching zero on the boundary �. Here, we utilize a
Gaussian-like laser beam as I0 (see Section 3.4). In this case,F (∇I0)
and F (I0) are very narrow Gaussian functions and on a similar
magnitude level for this Gaussian-like I0, thus we can neglect these
terms and only consider the magnitude of F (∇φ) and F (∇2φ). We
analyse two kinds of φ: first, a pure sine wave of different spatial
frequencies with unit magnitude; then the atmospheric turbulence
phases. Fig. 2 shows the power spectral density (PSD) of a sine
wave’s first and second derivatives. Now we analyse more realistic
turbulence phases. Assume that the PSD of the turbulence phase φ
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Figure 3. This is the PSD of φ, ∇φ, ∇2φ, and ∇φ + ∇2φ at r0 = 0.15 m
for turbulence phase φ. The minimum and maximum spatial frequencies
correspond to the outer scale L0 = 100 m and inner scale l0 = 0.01 m. We
can see that for a very low spatial frequency f < 0.15m−1 (equivalent to
6.6 m in spatial domain), ∇φ is more significant than ∇2φ, while for higher
spatial frequency vice versa.

follows the modified von Kármán PSD (Schmidt 2010),

�(f ) = 0.023r
−5/3
0

exp (−f 2/f 2
m)

(f 2 + f 2
0 )11/6

, (5)

where r0 is the atmospheric coherence length, f is the spatial fre-
quency (1/m), f0 = 1/L0 and fm = 5.92/(2π l0) (L0 is the outer scale
and l0 is the inner scale). Then we can obtain the PSD of ∇φ and
∇2φ (see Fig. 3),

|F (φ)|2 = 0.023r
−5/3
0

exp (−f 2/f 2
m)

(f 2 + f 2
0 )11/6

,

|F (∇φ)x,y |2 = 0.023r
−5/3
0

exp (−f 2/f 2
m)

(f 2 + f 2
0 )11/6

(2πfx,y)2,

|F (∇2φ)|2 = 0.023r
−5/3
0

exp (−f 2/f 2
m)

(f 2 + f 2
0 )11/6

(2πf )4. (6)

For a Shack–Hartmann WFS, the slope of the phase ∇φ is the
measured signal, while for PPPP both ∇φ and ∇2φ contribute to
the needed signal. Fig. 3 shows that ∇φ decreases with the spa-
tial frequency and ∇2φ on the contrary increases with the spatial
frequency. The sum of ∇φ and ∇2φ keeps almost constant across
the spatial frequency domain. Therefore, the PPPP signal is almost
independent of the spatial frequency for this Gaussian-like laser
beam.

Notably, here the PPPP signal is actually the on-sky measurement
without considering the return path. Given a certain pixel size of
the detector as shown in Section 3.2, the effect of the return path
can be neglected and the high frequencies are limited by the pixel
size instead of the turbulence. For instance, if there are 32 pixels
across the pupil on a 4-m telescope, then the corresponding cut-off
frequency equals N/2

D
= 16

4 m = 4 (1/m).

2.2 High-order effect

There are non-linearities due to the linearization of the TIE, as well
as the fact that the wavefront is changing as the wave propagates
according to equation (3). Milman (1996) and van Dam (2002) have
provided detailed analysis of the non-linear effects for a curvature
WFS. In this subsection, we will focus on similar effects for PPPP
and analyse the condition under which the high-order effect on PPPP

Figure 4. Schematic diagram of PPPP high-order effect.

can be neglected. Let the turbulence wavefront at the ground have
local curvature Cw = 1/rw where rw is the local radius of curvature
of the wavefront over a small area with illumination I ′

0 (see Fig. 4).
As the light propagates to h1 and h2, the illumination will become
I ′

1 and I ′
2 and the signal from the equivalent small areas is I ′

2 − I ′
1.

The following equation gives expressions for I ′
1, I ′

2, and I ′
2 − I ′

1,
which are

I ′
1

(
rw − h1

rw

)2

= I ′
0,

I ′
2

(
rw − h2

rw

)2

= I ′
0,

I ′
2 − I ′

1 = I ′
0

[(
rw

rw − h2

)2

−
(

rw

rw − h1

)2
]

. (7)

Expending about h, equation (7) becomes

I ′
2 − I ′

1 = I ′
0 ×

[
2

(
h2 − h1

rw

)
− 3

(
h2

2 − h2
1

r2
w

)
+ . . .

]
, (8)

when rw � h. The first term in equation (8) corresponds to the
curvature of the turbulence phase and the others cause the high-
order effect. To limit the high-order effect (here only the first and
second terms are considered), we have the following criterion

3

(
h2

2 − h2
1

r2
w

)
	 2

(
h2 − h1

rw

)
, (9)

which can be simplified as

rw � 1.5(h1 + h2). (10)

Equation (10) tells us h1 + h2 should be as small as possible to reduce
the high-order effect, however the PPPP signal from equation (4)
shows that h2 − h1 should be, on the contrary, as big as possible.
Thus, an optimal choice for h1 and h2 should be made. Due to the
fact that the Rayleigh beacon can only be detected at an altitude
where air density is still high, typically between 10 and 20 km,
and the fact that the atmospheric turbulence between h1 and h2 can
be only sensed by I2 (see Section 4.2), we adopt the choice that
h1 = 10 km and h2 = 20 km for the following simulations.

3 PPPP SI MULATI ON MODELLI NG

A PPPP simulation can be divided into three steps: first, to propa-
gate a collimated beam upwards from the telescope pupil plane to
several different altitudes (a minimum of two is required) – termed
upward propagation; then to reimage the Rayleigh backscattered
intensity patterns at those altitudes through the same telescope by
cameras conjugate at the corresponding heights – termed return
path; finally, to retrieve the distorted phase using the subtraction of
the images from these cameras – termed reconstruction. The im-
ages have to be scaled to the same flux to satisfy the conservation of
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energy. The major difference between PPPP and conventional LGS
wavefront sensing lies in the fact that the required signal for PPPP is
generated by the upward propagation of the collimated laser beam.
Meanwhile, the return path can be treated simply as a re-imaging
process, i.e. a convolution of the atmospheric downward PSF with
the backscattered patterns, which may degrade the backscattered
patterns depending on the strength of the turbulence. However, for
conventional LGS SH wavefront sensing, the return path is responsi-
ble for the needed slope measurement while the upward propagation
of the focused laser beam just introduces undesired LGS distortion.

For a conventional LGS combined with a SH WFS, a natural star
is still required for the tip-tilt correction, since movement of the
LGS caused by the uplink propagation is observed by the SH WFS
as a tip-tilt aberration. PPPP experiences a similar problem, where
the tip-tilt signal generated from the upward propagation (which is
a global movement of the intensity pattern) will be affected by the
return path, therefore it is also necessary to use a natural star to
provide the tip-tilt information. Due to this reason, from now on we
only consider the atmospheric aberrations with tip-tilt removed. To
keep the comparison between PPPP and SH WFS more simple and
compatible, all the simulations are run in an open loop here.

Another unique phenomenon for PPPP is that the telescope pri-
mary mirror, which has been used to launch the laser beam, is also
used to collect the scattered light from the sky, as well as the light
from the scientific object. Thus, if we use a short-wavelength laser,
say 589 nm (typical for sodium LGS), and an infrared scientific
camera, the fluorescence from the telescope optics could cause in-
terference for the science instrument. Therefore, we have to play it
the other way round, using a pulsed laser longer than the imaging
wavelength such as Nd:YAG at 1064 nm and limit the science ob-
servations to a shorter wavelength. However, to obtain diffraction
limited images, one needs a residual rms WFE of about 1/8 times
the imaging wavelength or less, which is very challenging for PPPP
since the imaging wavelength is restricted to be shorter than the laser
wavelength. This difficulty applies to all visible AO systems though,
and visible AO is of great interest for particular celestial objects and
can provide higher resolution diffraction-limited images.

3.1 Upward propagation

The upward propagation process is performed by a Fresnel diffrac-
tion kernel (Schmidt 2010 and Voelz 2011), according to

u(x, y; h) = F−1
[
H (fx, fy) × F [u(x, y; h = 0)]

]
, (11)

where u(x, y; h) are the electromagnetic fields at h. H(fx, fy) is the
transfer function of free-space propagation and equals

H (fx, fy) = ejkhe−jπλh(f 2
x +f 2

y ), (12)

where (fx, fy) is the coordinate in the spatial-frequency domain
at h = 0. The reason we use the transfer function (equation 12)
instead of the impulse response is because it is suitable for rel-
atively short propagation distance (Voelz 2011). The critical dis-
tance according to Voelz is 	xL/λ (where 	x is the sample in-
terval in the spatial domain, L is the total extent). To avoid prob-
lems with the periodicity of the Fourier transform involved in the
propagation simulation, the total extent L is 2×D according to the
Nyquist sampling criteria. So in our case the critical distance equals
4 m/32 × 8 m/1.06 um ≈ 1000 km if there are 32 pixels across the
pupil. This Fresnel diffraction has been performed by two steps.
First, u(x, y; h = 0) propagates from the source plane to an in-
termediate plane; then propagates to the observation plane. In this
way, we can control the grid spacing in the observation plane by

Figure 5. Schematic diagram of upward propagation.

choosing the intermediate plane (Schmidt 2010). The atmospheric
turbulence is simplified as several phase screens located at differ-
ent altitudes generated by the Monte Carlo FT (Fourier transform)
method (Schmidt 2010). Given these phase screens, we perform
Fresnel diffraction (equation 11) starting from the electromagnetic
field at the pupil plane u(x, y; h = 0) to the altitude of the first phase
screen h01, obtaining the electromagnetic field u(x, y; h01) at h01.
Then adding the phase screen φ, we perform Fresnel diffraction
using u(x, y; h01) × exp (jφ) as the new source and propagate this
new source with distance equalling h02 (see Fig. 5). This process
is repeated until the beam reaches h1 and h2, obtaining the inten-
sity patterns I1 and I2 at h1 and h2. To make the simulation more
realistic, we use 256 × 256 grids across the total extent L for the
electromagnetic fields u(x, y) and phase screens, then bin them to
64 × 64 pixels for I1 and I2 (which means 32 × 32 pixels are used
to sample the telescope pupil D for I1 and I2 in the detector).

3.2 Return path

Regarding the return path, two issues should be taken into con-
sideration: (1) the amount of flux scattered back (relating to SNR),
which can be calculated by the LIDAR (light detection and ranging)
equation (Hardy 1988) given the laser power, telescope diameter,
etc.; (2) and the downward turbulence-introduced PSF, which is
used to convolve with the intensity patterns on sky to perform the
re-imaging process.

The LIDAR equation is as follows:

N (h) =
(

Eλ

h
P
c

)
(σ

B
n(h)	h)

(
AR

4πh2

)
(T0T

2
Aη), (13)

where N(h) is the number of photons scattered back; λ = 1.06 um;
n(h) is the column density of scatterers, which is the atmospheric
atoms for Rayleigh scatter and sodium atoms for sodium reso-
nance fluorescence. The number of atmospheric atoms is a func-
tion of the atmospheric pressure and temperature, which are both
determined by the altitude h. The numbers of atmospheric atoms
per cubic metre at h1 and h2 are n(10 km) ≈ 1.00 × 1025 m−3 and
n(20 km) ≈ 3.18 × 1024 m−3. The sodium atom density is approx-
imately 5 × 109 m−3 and its depth is 10 km.

In equation (13), σ
B

is the effective backscatter cross-section,
which is equal to (Hardy 1988)

σR

B
= 5.45 × 10−32 [550/λ(nm)]4 Rayleigh scattering,

σ S

B
= 4 × 10−16(at 589 nm) sodium fluorescence. (14)

MNRAS 477, 4443–4453 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/4/4443/4969700
by University of Durham user
on 07 June 2018



Projected Pupil Plane Pattern (PPPP) 4447

Table 1. Parameters of the LIDAR equation. D is the diameter of the
telescope primary mirror (AR = 12.56 m2); h

P
is the Planck’s constant; c

is the velocity of light; η is the quantum efficiency of photon detector at
wavelength λ; T0 is the transmission of the optical components and TA is
the one-way transmission of the atmosphere; E is the laser energy during
the exposure time (2.5 ms), here an average 20 W pulsed laser with a 5 KHz
frequency is used. So E = 20 W/5 KHz × 2.5 ms × 5 KHz = 0.05 J; 	h1

and 	h2 are the range gate depth for h1 and h2, respectively (it has been
proven in Section 4.3 that photon noise mainly comes from the detector
conjugate at h2, so increasing 	h2 can improve SNR significantly).

D = 4 m h
P

= 6.626 × 10−34 J s c = 3 × 108 m s−1

η = 0.8 T0 = 0.5 TA = 1M

E = 0.05 J 	h1 = 1 km 	h2 = 5 km

Figure 6. Return-path turbulence-introduced averaged PSF projected to the
object plane from 500 random phase screens with different r0. PSF1 and
PSF2 are corresponding to h1 and h2.

The other parameters in the LIDAR equation are listed in Table 1.
If h1 = 10 km and h2 = 20 km, and 	h1 = 1 km and 	h2 =
5 km, the numbers of photons scattered back are 4.24 × 104 and
1.67 × 104, respectively. Notably, here 	h2 is 5 times 	h1 since
most of the noise comes from h2, and increasing 	h2 can improve
the SNR significantly. The expected flux return for sodium laser is
1.46 × 105 (at 589 nm).

The downward turbulence-introduced PSF can be obtained by
the scaled Fourier transform of the generalized pupil P (x, y) =
I

1/2
0 exp (jφ) according to the following equation (Goodman 1996):

PSF = |F [P (λhfx, λhfy)]|2. (15)

The averaged return-path PSFs for h1 and h2 projected to the sky
for different r0 are shown in Fig. 6. To reduce the effect of the
atmospheric PSF on the PPPP signal, we have to limit the PSF
width (1/e2 width here) to one pixel or less. From Fig. 6 the width
of PSF2 is nearly twice that of PSF1, which means the intensity
pattern at h2 is more blurred than h1 during the return path. Con-
sidering the worse case, i.e. PSF2, the PSF2 width for r0 = 0.15 m
(at 500 nm) is approximately 0.04 × 2 = 0.08 m. If the PSF is one
pixel or less, then the required pixel number N should be at most
D/0.08 = 50 for a 4-m telescope. If the telescope primary mirror D
is doubled, then the maximum pixel number N can be doubled as
well. For r0 = 0.1 and 0.2 m, the maximum N are 30 and 80, respec-
tively. During the return path the laser speckle pattern, produced by
the diffuse reflections of laser light acting on the atmosphere, can
be ignored since the time-scale of atmospheric molecules moving

(∼ several ns) is much smaller than the time-scale of the turbulence
changing (∼ several ms), and the laser speckle will be averaged out.

3.3 Reconstruction

The reconstruction process is based on the Gureyev and Nugent
(1996) linear method. Here, we briefly recall the Gureyev and Nu-
gent linear reconstruction method. First, let us calculate the scalar
product of equation (4) with Zernike polynomials, the scalar product
of the left-hand side equals〈

k
I2 − I1

h2 − h1
, Zj

〉
= R−2

∫ 2π

0

∫ R

0
k

I2 − I1

h2 − h1
· Zjrdrdθ, (16)

where Zj is the j-th Zernike polynomial, and R is the radius of the
telescope primary mirror. We define Fj =< k(I2 − I1)/(h2 − h1),
Zj >. On the other hand, the scalar product of the right-hand side
of equation (4) is

〈−∇ · (I0∇φ
)
, Zj

〉 = R−2
∫ 2π

0

∫ R

0
−∇ · (I0∇φ

)
Zjrdrdθ. (17)

If we decompose the turbulence phase φ into Zernike polynomials,
then

φ =
P∑

i=2

aiZi, (18)

where ai is the coefficient of the i-th Zernike polynomial and P is
the highest order Zernike term used. Substituting equation (18) into
equation (17), we get〈−∇ · (I0∇φ

)
, Zj

〉
=

P∑
i=2

aiR
−2

∫ 2π

0

∫ R

0
−∇ · (I0∇Zi) Zjrdrdθ. (19)

Using integration by parts
∫

udv = uv − ∫
vdu, equation (19) can

be written as〈−∇ · (I0∇φ
)
, Zj

〉
=

P∑
i=2

aiR
−2

∫ 2π

0

∫ R

0
I0∇Zi · ∇Zjrdrdθ, (20)

if the intensity distribution I0 satisfies

I0 > 0 inside the finite illuminated aperture �,

I0 = 0 outside � and on the boundary �, (21)

thus the integral over the boundary � disappears. Now it is conve-
nient to introduce the matrix M with elements

Mij =
∫ 2π

0

∫ R

0
I0∇Zi · ∇Zjrdrdθ. (22)

Using this definition, we can rewrite equations (16) and (20) as a
system of algebraic equations for the unknown Zernike coefficients

R2Fj =
P∑

i=2

Mijai or R2F = Ma. (23)

Finally, to retrieve the phase φ, we simply need to find the Zernike
coefficients ai, which equals

a = R2M−1F. (24)

Equation (24) is the final expression for this linear reconstruction.
F is based on the measured signal and the matrix M can be theoret-
ically calculated given the intensity distribution I0.
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Figure 7. An example of PPPP simulation process, including upward prop-
agation, return path, and reconstruction.

3.4 An example of PPPP simulation process

Fig. 7 shows an example of a complete PPPP simulation process
for a 4-m telescope. Here, a Gaussian-like beam

I0 = a + exp [−(x2 + y2)/(2σ 2)], (25)

with a = −0.1297 and σ = 1.05 m has been used. In this way, the
input laser beam satisfies equation (21). The choice of σ = 1.05 m
is to guarantee that I0 is smoothly approaching zero on the boundary
and the effective sensing area (the bright area of I0) can be as big
as possible. As shown in Fig. 7, the laser beam propagates to h1

and h2, forming I1 and I2 on sky, after passing through a random
phase screen (with tip-tilt removed and assuming the phase screen

Figure 8. Investigation of the number of pixels N and the number of Zernike
modes. The turbulence WFE represents the rms of the input phase screens
(around 350 nm when r0 = 0.15 m at 500 nm). The result is an average of
100 random phase screens and the same for the other results in this section.

is on the ground). I1 and I2 on sky are then convolved with the
atmosphere downward PSF1 and PSF2, respectively, generated by
the same phase screen, forming I1 and I2 on the ground. It is worth
mentioning that I1 and I2 have been normalized to the same flux
amount (here, normalized to the total amount of photons scattered
back from h2 before subtraction). The reconstructed phases (at the
last line in Fig. 7) show great similarity to the input phase screen
albeit at a lower resolution.

4 PPPP PERFORMANCE ANALYSI S

In this section, we provide apt choices for PPPP parameters. We also
analyse the effect of the turbulence profiles (including the altitudes
and strengths of the turbulence layers) and provide a detailed SNR
analysis when photon and read noise are added. Finally, we compare
the PPPP performance with the SH WFS using Rayleigh and sodium
LGSs for 4-m and 10-m telescopes.

4.1 Choosing suitable PPPP parameters

In this subsection, we analyse the PPPP performance given different
parameters and determine suitable choices for the pixel number, the
number of Zernike modes, h1 and h2, etc. The PPPP performance is
estimated by the residual WFE between the input phase screen and
the reconstructed phase.

4.1.1 Investigation of the number of pixels and Zernike modes

Fig. 8 shows the residual WFE between the reconstructed phase
and the input phase screen and the rms of the input phase screen
(without tip-tilt) in terms of different pixel number N across the
pupil in the detector and the number of Zernike modes. Except N =
16, we find that the residual WFE shares a similar tendency when
N changes from 32 to 256, where the WFE declines from 21 to
78 Zernike modes, followed by a slower decrease from 78 to 300
Zernike modes (apart from a sudden increase at 300 Zernike modes
when N = 32). That indicates optimal choices for N and Zernike
modes are 32 and 78, respectively, considering the balance of the
complexity and the performance.
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Figure 9. Investigation of the propagation heights h1 and h2. This figure is
consistent with the theoretical analysis in Section 2.2, where PPPP perfor-
mance is inversely proportional to h1 + h2.

Table 2. PPPP parameters for WHT.

D = 4 m λ = 1.06 um N = 32 78 Zernike modes
h1 = 10 km h2 = 20 km Gaussian-like I0

4.1.2 Investigation of h 1 and h 2

Regarding the propagation heights h1 and h2, Fig. 9 shows that
the PPPP performance is similar when h1 + h2 is constant and it
gets worse when h1 + h2 increases due to the high-order effect (see
Section 2.2). This proves again that h1 + h2 should be as small as
possible. Considering the balance of the high-order effect and the
PPPP sensitivity, the combination of h1 = 10 km and h2 = 20 km is
chosen.

4.1.3 Investigation of the intensity distribution I0

Another variable parameter for PPPP is the intensity distribution I0

at the telescope pupil. To investigate that, I0 = 1 inside the pupil �

(like a top-hat) has been adopted and the corresponding averaged
WFE is around 160 nm rms. For the Gaussian-like beam the resid-
ual WFE is around 100 nm rms. This is because the top-hat beam
does not meet equation (21) (not smoothly approaching 0 on the
boundary), hence not quite applicable for this linear reconstruction.
Therefore, we come to the conclusion that a Gaussian-like beam is
a better option.

Now we have analysed the effects of the pixel number across
the pupil, the number of Zernike modes, the propagation heights h1

and h2, and the intensity distribution I0. A reasonable choice for the
PPPP simulation parameters on the WHT is shown in Table 2.

4.2 Investigation of turbulence profile

Until now, only one turbulence layer on the ground has been taken
into consideration, however, the real turbulence profiles are never
like that. In this subsection, we first look into one turbulence layer
at different altitudes and then analyse multiple turbulence layers
located at different altitudes.

As shown in Fig. 10, when the turbulence layer is below
h1 = 10 km, the WFE is nearly constant. This can be proven by
equation (4), where the signal I2 − I1 only relates to h2 − h1. How-
ever, when the turbulence layer h is in between h1 and h2, only the
intensity pattern at h2 can see the turbulence and, of course when

Figure 10. One turbulence layer at different altitudes.

Figure 11. Three turbulence layers at different altitudes (‘WFE’ curve)
with different r0, compared with one compact turbulence layer (sum of
these three turbulence layers) at ground (‘WFE at ground’ curve).

h > h2, PPPP is blind to its effect. Fortunately, if the AO system
operates in a closed loop, the turbulence between 10 and 20 km can
be much better compensated to nearly the level when the turbulence
is below 10 km. Here, we only consider an open-loop system as the
emphasis of this paper is to introduce this novel alternative LGS
wavefront sensing technique instead of the point of view of a com-
plete AO system. An example of three turbulence layers, located
at [ 0, 5, 10 ] km with relative strength [ 0.5, 0.3, 0.2 ], is shown in
Fig. 11, compared with a compact turbulence layer (sum of these
three turbulence layers) on the ground. From this figure, we know
that multiple turbulence layers should not reduce PPPP performance
as long as the turbulence layers are below h1.

4.3 Investigation of SNR

Until now, all the simulation and analysis are based on a noise-free
situation. In this subsection, we present a detailed SNR analysis
when the photon and read noise are added. First, we consider the
photon noise. Assume the normalized signal is sn = I2 − I1/2I0,
then the variance of the error is approximated as follows according
to van Dam (2002),

E[(sn − sn)2] ≈ 1/(2Nphoton), (26)

where Nphoton is the average number of photons in each pixel over
the pupil. If 32 × 32 pixels are used in the detectors to sample the
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Figure 12. Variance of the error in the estimate of sn with different r0. The
results are an average of 20 random phase screens and for each phase screen
20 random Poisson distributions are performed to average the photon noise.
The same applies to other figures in Section 4.3.

Figure 13. Variance of the error in terms of photon noise, read noise to
a different degree and their combination. The variance of the read noise is
2 times the theoretical value since for PPPP two detectors are used together.

Figure 14. SNR including photon noise, read noise to a different degree
and their combination.

Figure 15. Log value of variance of photon noise with different pixel
numbers and laser powers.

Figure 16. SNR including only photon noise with different pixel numbers
and laser powers.

pupil, the average return fluxes in each pixel of detectors conjugate
at h1 and h2 are 76 and 30 photons, respectively. Then the theoretical
variance of the error caused by photon noise according to equation
(26) should be 1/(2 × 76) = 0.0066 and 1/(2 × 30) = 0.0167. The
average variance of sn with different r0 is plotted in Fig. 12, where
sn ≈ 0.015 for each pixel. It can be seen that the curve exhibits
the behaviour predicted by equation (26) more closely when the
amount of return flux from h2 is used. That means the photon noise
for PPPP comes mainly from the detector conjugate at h2.

Now we add read noise as well to analyse the noise variance and
the SNR. Assume the signal s = I2 − I1, then the variance of the error
is rms of (E[(s − s)2]) over all pixels and the signal is

√
(rms(s2)).

Fig. 13 shows the variance of the noise including the photon noise
and read noise, as well as their sum. It can be seen that both photon
and read noise are independent of the turbulence strength r0, and
photon noise is dominant until read noise equals 5e− rms. Fig. 14
provides the corresponding SNR with the same kinds of noise shown
in Fig. 13 in terms of different r0. It is obvious that all SNR curves
decrease as r0 increases, which demonstrates that PPPP signal is
inversely proportional to r0. This is fairly easy to understand from
equation (4), where the signal I2 − I1 is proportional to φ. Again
from Fig. 14, we find that photon noise is the main limit to SNR
when read noise is less than 5e−. In reality, we intend to adopt an
Avalanche PhotoDiode detector instead of a CCD to reduce the read
noise to nearly 0. Now if we ignore read noise and analyse the effect
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Figure 17. Soapy GUI including PPPP model.

Table 3. Parameters for Soapy simulation platform. PPPP and Shack–Hartmann share the same parameters for telescope, atmosphere, DM, and science camera.
T0 is the transmission of the optical components and TA is the one-way transmission of the atmosphere.

Telescope Atmosphere DM Science camera

D = 4 m or 10 m r0 = 0.15 m (at 500 nm) Zernike DM λ = 0.8 um
128 × 128 pixels over pupil TA = 1 78 Zernike modes 64 × 64 pixels
T0 = 0.5

PPPP Shack–Hartmann WFS

32 × 32 (or 80 × 80) pixels λ = 1.06 um LGS height: 10 or 20 or 90 km λ = 1.06 um (or 589 nm)
h1 = 10 km h2 = 20 km 15 × 15 sub-apertures Pixels per subap: 14 × 14
	h1: 1 km 	h2: 5 km FOV per subap: 5.5 arcsec Laser launch pupil: 0.3 m
read noise 3e− η = 0.8 read noise 3e−

of return flux on photon noise, we find that the variance of photon
noise is proportional to the flux amount in each pixel from Fig. 15.
The number of photons in each pixel can be determined either by the
laser power or the pixel size in a similar manner. The corresponding
SNR is shown in Fig. 16, where we can come to the conclusion that
binning the images (increasing the pixel size) to increase photon
number in each pixel can improve SNR very slightly compared to
increasing the laser power. That is because the binned signal is very
badly sampled.

There are other noise sources such as dark current and sky back-
ground. These two kinds of noises are normally very small compared
to photon and read noise. For example, the dark current is around
0.015 e− during 2.5 ms exposure time for the Keck OSIRIS (a near-
infrared integral field spectrograph) detector. According to Gemini
tests on Mauna Kea, the sky background is only about 10 photons
per second per arcsec squared per metre squared for λ = 1.06 um.

4.4 Comparison with Shack–Hartmann WFS

The PPPP simulation model has been integrated into Soapy, which
is a Monte Carlo AO simulation written in the Python programming
language (Reeves 2015). The simulation is arranged into objects

which represent individual AO components, such as the atmosphere,
WFS, DM, reconstruction, etc. A GUI of Soapy including PPPP
model is shown in Fig. 17.

To demonstrate the performance of PPPP for 4-m and 10-m tele-
scopes, a conventional SH WFS with a Rayleigh LGS focused at
10 or 20 km, or a sodium LGS has been used as a comparison, with
the parameters listed in Table 3. Fig. 18 shows the performance of
the PPPP and SH with Rayleigh LGS (10 and 20 km) and sodium
LGS when the turbulence layer is located at 0, 5, and 10 km, respec-
tively. Looking at the SH curves with Rayleigh and sodium LGSs
(blue, green, and red curves), it is obvious that when the turbulence
layer is on the ground, the WFEs for Rayleigh LGSs focused at 10
and 20 km are very similar. The small difference between sodium
LGS and Rayleigh LGSs in this case is caused by different wave-
lengths used (1.06 um for Rayleigh LGSs and 589 nm for sodium
LGS). However, when the turbulence layer is located at 5 or 10 km,
sodium LGS gives much better performance than Rayleigh LGSs.
That proves the existence of focus anisoplanatism for a single LGS
SH. According to the propagation of error for uncorrelated variables
with equal weight,

σ 2 =
n∑
i

σ 2
i , (27)
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Figure 18. Performance of PPPP and SH with Rayleigh and sodium LGSs on 4-m and 10-m telescopes. The x-axis is the laser power (where ‘∞’ means
infinite power, i.e. without noise). The turbulence layer is located at 0, 5, or 10 km. Rayleigh1 and Rayleigh2 represent 10 and 20 km of Rayleigh scatter height
with the laser pulse length 1 and 5 km correspondingly. For the 4-m telescope, the pixel number across the detectors is 32, while for the 10-m telescope it is 80
to keep the pixel size projected to the object plane the same. The result is an average of 100 iterations from Soapy simulation. 78 Zernike modes are used for
both 4-m and 10-m telescopes as it is easy to compare.

Table 4. WFE (nm) caused by focus anisoplanatism in terms of Rayleigh
LGSs focused at 10 and 20 km and sodium LGS when the turbulence layers
are located at 5 or 10 km, respectively.

4-m telescope 10-m telescope

Turbulence layer 5 km 10 km 5 km 10 km
Rayleigh LGS (10 km) 260 291 559 630
Rayleigh LGS (20 km) 176 268 375 570
Sodium LGS 53 90 63 181

where σ 2 is the total variance and σ 2
i is the variance of the i-th

element. Here, the total variance σ 2 is σ 2
LGS, including elements of

σ 2
NGS and σ 2

f (representing focus anisoplanatism). σ 2
LGS is shown in

Fig. 18 corresponding to ∞ power. σ 2
NGS can be calculated according

to Noll (1975).

	J = 0.2944 × J−√
3/2(D/r0)5/3(rad2) for large J . (28)

So σ NGS for 4-m and 10-m telescopes should be

WFE	78 (D = 4 m) = 101 nm,

WFE	78 (D = 10 m) = 216 nm, (29)

when r0 = 0.15 m at 500 nm. Given σ 2
LGS and σ 2

NGS, the WFE caused
by focus anisoplanatism is calculated and shown in Table 4. We
can see that the lower the LGS, the larger the telescope or the
higher the turbulence layer is, the bigger the WFE caused by the
anisoplanatism becomes.

As for the PPPP results, we can see that the PPPP WFE is very
similar no matter whether the turbulence layer is located at 0, 5,
or 10 km for both 4-m and 10-m telescopes. That proves PPPP
does not suffer from focus anisoplanatism. From another point of
view PPPP can achieve ∼100 nm WFE rms for a 4-m telescope
and ∼200 nm WFE rms for a 10-m telescope without noise (see
Fig. 18), which are very similar to the theoretical results according
to equation (29). That means PPPP WFE only comes from the finite
DM compensation and demonstrates again that PPPP is a focus-
anisoplanatism free method.

However, from Fig. 18, the PPPP WFE increases rapidly when
the laser power declines compared with the SH WFS, which indi-
cates that PPPP is more sensitive to the noise than the SH WFS.
Particularly when only a 20 W laser is used, the WFE of PPPP is

approximately 1200 nm for a 4-m telescope and 3000 nm for a 10-m
telescope. Increasing the SNR of PPPP is of critical importance to
advance this new technique to a practical level. Now we are work-
ing on a non-linear reconstruction – Neural Network to reduce the
laser power requirement. Also, to increase the total laser power for
a large telescope, it is not strictly required to use a coherent light for
PPPP. So we can simply combine several low-power lasers together
with each laser illuminating a small area of the pupil. Regarding
the safety issue, PPPP actually wins in this aspect since a broad
collimated beam is used instead of a tightly focused laser beam,
which concentrates a very large amount of energy near the focus.

Apart from removal of focus anisoplanatism, relief of safety haz-
ards, and its simplicity compared to LTAO, there are other potential
benefits regarding PPPP. For example, sodium LGSs vary tempo-
rally and spatially, causing measurement biases that appear at all
time-scales and lead to a large measurement error from the cor-
responding LGS WFS (Wang 2015). Also, due to the finite depth
of the sodium layer, each sub-aperture of the SH WFS will see
an elongated spot, which will also arouse measurement error, and
this phenomenon becomes more serious for large telescopes. PPPP,
however, will have no such problems, and shows a great potential
for ELTs.

5 C O N C L U S I O N S

We have demonstrated a novel alternative LGS scheme – PPPP and
its corresponding wavefront sensing and reconstruction method. We
analyse two particular aspects: the PPPP signal and the high-order
effect theoretically. A detailed Monte Carlo model including up-
ward propagation, return path, and reconstruction has been carried
out. The recommendations that we draw from the simulation in-
clude the optimum pixel number to sample the pupil in the detector
(N = 32), the optimum number of Zernike modes (which is 78),
propagation altitudes h1 and h2, and the choice for the laser beam
modulation (Gaussian beam is better than a top-hat). We also inves-
tigate the effect of the height of one turbulence layer and multiple
turbulence layers located at different altitudes and find that multiple
turbulence layers will not reduce PPPP performance as long as the
turbulence layers are below h1. We present a detailed SNR analysis
when photon and read noise are introduced. By integrating PPPP
simulation model into a full Monte Carlo end-to-end AO simulation
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tool, Soapy, we obtain the PPPP performance compared with a con-
ventional SH WFS with a Rayleigh LGS focused at 10 or 20 km, or
a sodium LGS for 4-m and 10-m telescopes, respectively. From the
Soapy simulation results, we can confirm that PPPP does not suffer
from focus anisoplanatism.
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