Dr Tahani Coolen-Maturi tahani.maturi@durham.ac.uk
Professor
Non‐parametric predictive inference for the validation of credit rating systems
Coolen-Maturi, T.; Coolen, F.P.A.
Authors
Professor Frank Coolen frank.coolen@durham.ac.uk
Professor
Abstract
Credit rating or credit scoring systems are important tools for estimating the obligor's creditworthiness and for providing an indication of the obligor's future status. The discriminatory power of a credit rating or credit scoring system refers to its ex ante ability to distinguish between two or more classes of borrowers. One of the most popular tools for the validation of the power of credit rating or credit scoring models to distinguish between two (or more) classes of borrowers is the receiver operating characteristic (ROC) curve (hypersurface) and its widely used overall summary, the area (hypervolume) under the curve (hypersurface). As the end goal of building such models is to predict and quantify uncertainty about future loans, prediction methods are especially valuable in this context. For this, non‐parametric predictive inference is a promising candidate for such inference as it is a frequentist statistical method that is explicitly aimed at using few modelling assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. The aim of the paper is to introduce non‐parametric predictive inference for ROC analysis within a banking context, for which novel results on ROC hypersurfaces for more than three groups are presented. Examples are provided to illustrate the method.
Citation
Coolen-Maturi, T., & Coolen, F. (2019). Non‐parametric predictive inference for the validation of credit rating systems. Journal of the Royal Statistical Society: Series A, 182(4), 1189-1204. https://doi.org/10.1111/rssa.12416
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 7, 2018 |
Online Publication Date | Oct 7, 2018 |
Publication Date | Oct 31, 2019 |
Deposit Date | Sep 7, 2018 |
Publicly Available Date | Oct 7, 2019 |
Journal | Journal of the Royal Statistical Society: Series A |
Print ISSN | 0964-1998 |
Electronic ISSN | 1467-985X |
Publisher | Royal Statistical Society |
Peer Reviewed | Peer Reviewed |
Volume | 182 |
Issue | 4 |
Pages | 1189-1204 |
DOI | https://doi.org/10.1111/rssa.12416 |
Public URL | https://durham-repository.worktribe.com/output/1349706 |
Files
Accepted Journal Article
(275 Kb)
PDF
Copyright Statement
This is the accepted version of the following article: Coolen-Maturi, T. & Coolen, F.P.A. (2019). Non‐parametric predictive inference for the validation of credit rating systems. Journal of the Royal Statistical Society: Series A 182(4): 1189-1204, which has been published in final form at https://doi.org/10.1111/rssa.12416. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
You might also like
Smoothed bootstrap methods for bivariate data
(2023)
Journal Article
Discussion of signature‐based models of preventive maintenance
(2022)
Journal Article
A Cost-Sensitive Imprecise Credal Decision Tree based on Nonparametric Predictive Inference
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search