A. Katsianis
The evolution of the star formation rate function in the EAGLE simulations: a comparison with UV, IR and Hα observations from z ∼ 8 to z ∼ 0
Katsianis, A.; Blanc, G.; Lagos, C.P.; Tejos, N.; Bower, R.G.; Alavi, A.; Gonzalez, V.; Theuns, T.; Schaller, M.; Lopez, S.
Authors
G. Blanc
C.P. Lagos
N. Tejos
R.G. Bower
A. Alavi
V. Gonzalez
Professor Tom Theuns tom.theuns@durham.ac.uk
Professor
M. Schaller
S. Lopez
Abstract
We investigate the evolution of the galaxy star formation rate function (SFRF) and cosmic star formation rate density (CSFRD) of z ∼ 0–8 galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations. In addition, we present a compilation of ultraviolet, infrared and H α SFRFs and compare these with the predictions from the EAGLE suite of cosmological hydrodynamic simulations. We find that the constraints implied by different indicators are inconsistent with each other for the highest star-forming objects at z < 2, a problem that is possibly related to selection biases and the uncertainties of dust attenuation effects. EAGLE's feedback parameters were calibrated to reproduce realistic galaxy sizes and stellar masses at z = 0.1. In this work we test if and why those choices yield realistic star formation rates (SFRs) for z ∼ 0–8 as well. We demonstrate that supernovae feedback plays a major role at setting the abundance of galaxies at all star-forming regimes, especially at high redshifts. On the contrary, active galactic nuclei (AGN) feedback becomes more prominent at lower redshifts and is a major mechanism that affects only the highest star-forming systems. Furthermore, we find that galaxies with SFR ∼1–10 M⊙ yr−1 dominate the CSFRD at redshifts z ≤ 5, while rare high star-forming galaxies (SFR ∼10–100 M⊙ yr−1) contribute significantly only briefly around the peak era (z ∼ 2) and then are quenched by AGN feedback. In the absence of this prescription objects with SFR ∼10–100 M⊙ yr−1 would dominate the CSFRD, while the cosmic budget of star formation would be extremely high. Finally, we demonstrate that the majority of the cosmic star formation occurs in relatively rare high-mass haloes (MHalo ∼ 1011–13 M⊙) even at the earliest epochs.
Citation
Katsianis, A., Blanc, G., Lagos, C., Tejos, N., Bower, R., Alavi, A., …Lopez, S. (2017). The evolution of the star formation rate function in the EAGLE simulations: a comparison with UV, IR and Hα observations from z ∼ 8 to z ∼ 0. Monthly Notices of the Royal Astronomical Society, 472(1), 919-939. https://doi.org/10.1093/mnras/stx2020
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 3, 2017 |
Online Publication Date | Aug 5, 2017 |
Publication Date | Nov 21, 2017 |
Deposit Date | Nov 14, 2017 |
Publicly Available Date | Nov 14, 2017 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 472 |
Issue | 1 |
Pages | 919-939 |
DOI | https://doi.org/10.1093/mnras/stx2020 |
Public URL | https://durham-repository.worktribe.com/output/1343786 |
Files
Published Journal Article
(2.2 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
The impact and response of mini-haloes and the interhalo medium on cosmic reionization
(2024)
Journal Article
A sparse regression approach for populating dark matter haloes and subhaloes with galaxies
(2022)
Journal Article
The importance of black hole repositioning for galaxy formation simulations
(2022)
Journal Article