Edward Pope edward.pope@durham.ac.uk
Honorary Fellow
Origin of spectacular fields of submarine sediment waves around volcanic islands: distinguishing eruption-fed supercritical flow bedforms from slope failures
Pope, Ed L.; Jutzeler, Martin; Cartigny, Matthieu J.B.; Shreeve, James; Talling, Peter J.; Wright, Ian C.; Wysoczanski, Richard J.
Authors
Martin Jutzeler
Dr Matthieu Cartigny matthieu.j.cartigny@durham.ac.uk
Associate Professor
James Shreeve
Peter J. Talling
Ian C. Wright
Richard J. Wysoczanski
Abstract
Understanding how large eruptions and landslides are recorded by seafloor morphology and deposits on volcanic island flanks is important for reconstruction of volcanic island history and geohazard assessment. Spectacular fields of bedforms have been recognised recently on submerged flanks of volcanic islands at multiple locations worldwide. These fields of bedforms can extend over 50 km, and individual bedforms can be 3 km in length and 150 m in height. The origin of these bedform fields, however, is poorly understood. Here, we show that bedforms result from eruption-fed supercritical density flows (turbidity currents) in some locations, but most likely rotational landslides at other locations. General criteria are provided for distinguishing between submarine bedforms formed by eruptions and landslides, and emphasise a need for high resolution seismic datasets to prevent ambiguity. Bedforms associated with rotational landslides have a narrower source, with a distinct headscarp, they are more laterally confined, and internal bedform structure does not suggest upslope migration of each bedform. Eruption-fed density currents produce wide fields of bedforms, which extend radially from the caldera. Internal layers imaged by detailed seismic data show that these bedforms migrated up-slope, indicating that the flows that produced them were Froude supercritical. Due to the low density contrast between interstitial fluid and sediment, the extent and dimensions of submarine eruption-fed bedforms is much greater than those produced by pyroclastic density currents on land.
Citation
Pope, E. L., Jutzeler, M., Cartigny, M. J., Shreeve, J., Talling, P. J., Wright, I. C., & Wysoczanski, R. J. (2018). Origin of spectacular fields of submarine sediment waves around volcanic islands: distinguishing eruption-fed supercritical flow bedforms from slope failures. Earth and Planetary Science Letters, 493, 12-24. https://doi.org/10.1016/j.epsl.2018.04.020
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 12, 2018 |
Online Publication Date | Apr 24, 2018 |
Publication Date | Jul 1, 2018 |
Deposit Date | Nov 27, 2017 |
Publicly Available Date | Apr 25, 2018 |
Journal | Earth and Planetary Science Letters |
Print ISSN | 0012-821X |
Electronic ISSN | 1385-013X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 493 |
Pages | 12-24 |
DOI | https://doi.org/10.1016/j.epsl.2018.04.020 |
Public URL | https://durham-repository.worktribe.com/output/1343598 |
Files
Published Journal Article
(6.6 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
You might also like
Detailed monitoring reveals the nature of submarine turbidity currents
(2023)
Journal Article
Predicting turbidity current activity offshore from meltwater-fed river deltas
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search