Timothy C. Pearce
Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex
Pearce, Timothy C.; Karout, Salah; Rácz, Zoltán; Capurro, Alberto; Gardner, Julian W.; Cole, Marina
Authors
Salah Karout
Zoltán Rácz
Alberto Capurro
Julian W. Gardner
Marina Cole
Abstract
We present a biologically-constrained neuromorphic spiking model of the insect antennal lobe macroglomerular complex that encodes concentration ratios of chemical components existing within a blend, implemented using a set of programmable logic neuronal modeling cores. Depending upon the level of inhibition and symmetry in its inhibitory connections, the model exhibits two dynamical regimes: fixed point attractor (winner-takes-all type), and limit cycle attractor (winnerless competition type) dynamics. We show that, when driven by chemosensor input in real-time, the dynamical trajectories of the model's projection neuron population activity accurately encode the concentration ratios of binary odor mixtures in both dynamical regimes. By deploying spike timing-dependent plasticity in a subset of the synapses in the model, we demonstrate that a Hebbian-like associative learning rule is able to organize weights into a stable configuration after exposure to a randomized training set comprising a variety of input ratios. Examining the resulting local interneuron weights in the model shows that each inhibitory neuron competes to represent possible ratios across the population, forming a ratiometric representation via mutual inhibition. After training the resulting dynamical trajectories of the projection neuron population activity show amplification and better separation in their response to inputs of different ratios. Finally, we demonstrate that by using limit cycle attractor dynamics, it is possible to recover and classify blend ratio information from the early transient phases of chemosensor responses in real-time more rapidly and accurately compared to a nearest-neighbor classifier applied to the normalized chemosensor data. Our results demonstrate the potential of biologically-constrained neuromorphic spiking models in achieving rapid and efficient classification of early phase chemosensor array transients with execution times well beyond biological timescales.
Citation
Pearce, T. C., Karout, S., Rácz, Z., Capurro, A., Gardner, J. W., & Cole, M. (2013). Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex. Frontiers in Neuroscience, 7, Article 119. https://doi.org/10.3389/fnins.2013.00119
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 20, 2013 |
Online Publication Date | Jul 12, 2013 |
Publication Date | Jul 12, 2013 |
Deposit Date | Nov 23, 2017 |
Publicly Available Date | Nov 23, 2017 |
Journal | Frontiers in Neuroscience |
Print ISSN | 1662-4548 |
Electronic ISSN | 1662-453X |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 7 |
Article Number | 119 |
DOI | https://doi.org/10.3389/fnins.2013.00119 |
Public URL | https://durham-repository.worktribe.com/output/1339503 |
Files
Published Journal Article
(3.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Copyright © 2013 Pearce, Karout, Rácz, Capurro, Gardner and Cole. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
You might also like
Characterization and control of unconfined lateral diffusion under stencil masks
(2007)
Journal Article
Nanofabrication using nanotranslated stencil masks and lift off
(2004)
Journal Article
Soft Elastomeric Capacitive Sensor for Structural Health Monitoring
(2017)
Journal Article
Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System
(2017)
Journal Article