L. Fan
The point collocation method with a local maximum entropy approach
Fan, L.; Coombs, W.M.; Augarde, C.E.
Authors
Professor William Coombs w.m.coombs@durham.ac.uk
Professor
Professor Charles Augarde charles.augarde@durham.ac.uk
Head Of Department
Abstract
Meshless methods have long been a topic of interest in computational modelling in solid mechanics and are broadly divided into weak and strong form-based approaches. The need for numerical integration in the former remains a challenge often met by using a background mesh or complex stabilised nodal approaches. It is only strong form-based point collocation methods (PCMs) which dispense with meshing and integration entirely, and for this reason PCMs remain of interest. In this paper, a new point collocation method is developed which is based on maximum entropy basis functions which bring benefits in terms of accuracy and efficiency. These basis functions possess non-negativity and a weak Kronecker delta property which decreases the errors on boundaries to improve overall accuracy of solutions. After a discussion of implementation issues in the new method, numerical examples are presented, including 1D and 2D problems with linear elasticity and Poisson PDEs, on both convex and non-convex domains to show the performance. Comparisons of convergence properties with respect to accuracy and computational cost (both CPU time and floating point operations) are made with an existing method, the reproducing kernel collocation method (RKCM), to show the effectiveness of the proposed method. In all examples, higher order convergence rates are obtained using the developed method with increasingly reduced computational effort for higher levels of accuracy due to the fundamental advantages.
Citation
Fan, L., Coombs, W., & Augarde, C. (2018). The point collocation method with a local maximum entropy approach. Computers and Structures, 201, 1-14. https://doi.org/10.1016/j.compstruc.2018.02.008
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 12, 2018 |
Online Publication Date | Mar 27, 2018 |
Publication Date | May 1, 2018 |
Deposit Date | Feb 12, 2018 |
Publicly Available Date | Mar 27, 2019 |
Journal | Computers and Structures |
Print ISSN | 0045-7949 |
Electronic ISSN | 1879-2243 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 201 |
Pages | 1-14 |
DOI | https://doi.org/10.1016/j.compstruc.2018.02.008 |
Public URL | https://durham-repository.worktribe.com/output/1339380 |
Files
Accepted Journal Article
(1.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2018 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Simulation of strain localisation with an elastoplastic micropolar material point method
(2024)
Presentation / Conference Contribution
Consequences of Terzaghi’s effective stress decomposition in the context of finite strain poro-mechanics
(2024)
Presentation / Conference Contribution
Dynamic three-dimensional rigid body interaction with highly deformable solids, a material point approach
(2024)
Presentation / Conference Contribution
On the implementation of a material point‐based arc‐length method
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search