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Abstract

Meshless methods have long been a topic of interest in computational modelling in solid mechanics

and are broadly divided into weak and strong form-based approaches. The need for numerical

integration in the former remains a challenge often met by using a background mesh or complex

stabilised nodal approaches. It is only strong form-based point collocation methods (PCMs) which

dispense with meshing and integration entirely, and for this reason PCMs remain of interest. In

this paper, a new point collocation method is developed which is based on maximum entropy basis

functions which bring benefits in terms of accuracy and efficiency. These basis functions possess

non-negativity and a weak Kronecker delta property which decreases the errors on boundaries to im-

prove overall accuracy of solutions. After a discussion of implementation issues in the new method,

numerical examples are presented, including 1D and 2D problems with linear elasticity and Poisson

PDEs, on both convex and non-convex domains to show the performance. Comparisons of con-

vergence properties with respect to accuracy and computational cost (both CPU time and floating

point operations) are made with an existing method, the reproducing kernel collocation method

(RKCM), to show the effectiveness of the MEPCM. In all examples, higher order convergence rates

are obtained using the developed method with increasingly reduced computational effort for higher

levels of accuracy due to the fundamental advantages.
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1. Introduction

Computational solid mechanics has been dominated by methods based on weak forms for decades,

the prime examples being the finite element method (FEM) and the boundary element method

(BEM). Many of the difficulties met in using these weak form methods relate to the need for the

problem domain to be discretized into a mesh; the generation of the mesh may itself be a ma-5

jor computational problem in 3D, while the performance of a mesh during a non-linear analysis

can deteriorate due to distortion. Meshless weak form-based methods, developed since the 1990s,

have been seen as a potential solution to this problem (for a comprehensive review, refer to [1])

and include the element-free Galerkin method (EFGM) [2, 3], the Meshless Local Petrov-Galerkin

method [4] and reproducing kernel particle methods (RKPMs) [5]. These weak-form based mesh-10

less methods have been successfuly used to model problems involving large deformations [6], crack

propagation [7, 8, 9, 10] and non-linear materials [11, 12]. Despite many positive aspects such as

improved accuracy, weak-form based meshless methods have yet to rival finite elements in commer-

cial codes largely due to their computational cost. In addition, some meshless methods have been

criticised for not actually being truly meshless as a background grid is needed for integration. To15

counter this criticism, direct nodal integration has been developed (e.g. [13]) and some of the initial

issues with instability and low accuracy have been addressed, such as in the stabilized conforming

approach in [14].

Strong form-based meshless methods based on point collocation offer the possibility of mesh-

free methods with low computational cost and have in the past been labelled as “truly meshless”20

[15, 16, 17, 18, 19]. They are straightforward to implement and remove entirely the complexities

associated with domain integration [20, 21]. These methods discretize a problem domain into

collocation (or “data”) points at which the PDE is approximated using basis functions associated

with a different set of points (the source points or “centres”). Boundary conditions are imposed

directly on boundary points and a linear system is derived in which the field variable values at source25

points are the initial solution. An early example of this type of method is due to Kansa [15, 16] who

employed radial basis functions (multiquadrics) and in later work, a radial basis collocation method

was used to solve singularity [22], and higher order problems [23]. More recently, other meshless

collocation methods have been proposed such as schemes with the moving least squares basis for

solutions to the incompressible Navier-Stokes (NS) equations in the velocity-pressure formulation30

[24]. This standard collocation meshless solver has been improved to address laminar flow problems
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and multiple complex-geometry problems in 2D [25]. However, the condition number of the discrete

system formed using radial basis function-based collocation was found to be large and additional

approaches [26] have been developed to address this ill-conditioning problem. Alternative strong

form collocation frameworks have been used to solve problems defined by PDEs using basis functions35

obtained by the reproducing kernal approximation [27], where the method is generally referred to

as the reproducing kernel collocation method (RKCM). RK-based methods automatically satisfy

consistency requirements (similar to completeness in finite elements) assuring algebraic convergence

rates [28, 29]. While isogeometric methods are usually associated with finite elements, they have

made an appearance in collocation methods, first in [30], the aim being to exploit the smoothness40

properties of NURBS-based basis functions. Different methods are proposed for the generation of

optimal locations for collocation points in these methods in [31] and the computational efficiency

of these methods is compared with Galerkin methods in [32].

It is important to note that in strong form point collocation methods (PCMs), higher deriva-

tives of the basis functions are required than would typically be the case, for the same problem, in45

a weak form-based method such as the EFGM. Although approximation schemes such as moving

least squares (MLS) and reproducing kernels are smooth, the analytical determination of higher

derivatives required for PDEs such as elasticity are complex, and their step-by-step calculation is

time-consuming. Basis functions derived using the standard RKPM require the inversion of mo-

ment matrices (as do equivalent MLS-based functions). This inversion feature complicates matters50

when calculating basis function derivatives to first and second order especially in multidimensional

problems, increasing the computational cost. Evidence of this can be found in [33, 34] and to

address it, some novel formulations have been devised such as a gradient RKPM [35] where the

calculations of the basis function derivatives are simplified, differential reproducing kernel interpo-

lation (DRK) [36, 37] and a fast MLS approach [38] in which novel efficient algorithms are used to55

enhance the efficiency of the derivative calculations. Another source of computational cost comes

from the observation that for optimal convergence more collocation points than source points are

required, forming an overdetermined system [35, 21] which must be solved in, say, a least squares

sense rather than directly. Despite these shortcomings, the RKCM is straightforward to implement

and has been an important tool for the analysis of engineering problems [39, 40]. However, numer-60

ical results sometimes suffer from instability and accuracy issues. A key contributor to these errors

is in the imposition of essential boundary conditions [41], as is the case with MLS and RK-based
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meshless methods of all types.

In this paper, we tackle the latter source of error by making use of maximum-entropy (max-ent)

basis functions. These are derived from classical information theory [42] and the max-ent principle65

[43]. Two key characteristics of max-ent basis functions are non-negativity and the satisfaction of the

weak Kronecker-delta property on the boundaries. The former property makes the approximation

schemes non-negative (convex) [44] and the max-ent basis functions smoother in contrast with other

basis functions with negative values. The latter facilitates the imposition of essential boundary

conditions accurately because the Kronecher-delta property on the boundary points makes the70

essential boundary fully satisfied. In this case “weak” means that the max-ent basis functions for

points inside the domain do not possess the Kronecker-delta property [45]. Max-ent basis functions

with compact support are derived using weight functions [46] in which the first and second order

reproducing conditions are viewed as constraints. The resulting approximations retain the same

order of reproducing conditions, namely the first and second order max-ent basis functions [44, 47].75

Reviews of weak form-based meshless methods using max-ent basis functions can be found in

[48, 49, 50, 51]. Max-ent basis functions are also used to couple the FEM and the EFGM in

[52]. With the satisfaction of a weak Kronecker-delta property in max-ent basis functions, the

imposition of essential boundary conditions can be carried out directly. There remain some issues

with the imposition of Neumann boundary conditions, however, because the Lagrange multiplier in80

the expression of the first max-ent basis function derivatives blow up for points on the Neumann

boundary conditions which makes the first derivative values indeterminate [53]. This is an open

problem beyond the scope of this paper. As indicated above, max-ent approximation has only been

used to date for weak form-based meshless methods and in this work, local max-ent basis functions

are used in a simple PCM. Considerable computational efficiency is demonstrated for the presented85

method as compared to a PCM based on RK basis functions.

The structure of this paper is as follows. Section 2 provides a brief review of the basic theory

of PCMs, the expressions for local max-ent basis functions and their derivatives. Implementation

issues associated with the max-ent PCMs are presented in Section 3. In Section 4, the proposed

method is applied to some numerical examples to validate the approach. Final remarks are collected90

in Section 5.
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2. Background

2.1. Review of point collocation methods

The theoretical background now presented is based on two-dimensional spatial domains but it is

straightforward to modify for other dimensionalities. Consider a two-dimensional problem domain

Ω bounded by boundary Γ (Γ = Γu ∩ Γt) as shown in Figure 1. The collocation points and source

Figure 1: A problem domain with boundary conditions in PCMs.

points (numbering Nc and Ns respectively) are distributed in the domain Ω and on the boundary Γ.

The collocation points are distributed to enforce the governing PDE and corresponding boundary

conditions which are satisfied at each collocation point. The surrounding source points, which fall

in the local support domain of each collocation point, are used for the construction of the basis

functions and determine the approximation of the solution over the domain. The governing PDE

and the two types of boundary conditions are described as

L u =fb in Ω, (1a)

Luu =g on Γu and Ltu = h on Γt, (1b)

where L is the differential operator in Ω, Lu and Lt are the differential operators for the Dirichlet

and Neumann boundary conditions. u is the unknown source point value, fb is the forcing term at
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collocation points, g is the prescribed value on Dirichlet (essential) boundaries Γu and h denotes

the known traction on Neumann (natural) boundaries Γt. To implement the PCM one imposes

the appropriate condition from Eqn (1) at each collocation point, leading to a discrete set of Nc

equations which are in block matrix form
K11 K12 · · · K1Ns

K21 K22 · · · K2Ns

· · · · · ·

KNc1 KNc2 · · · KNcNs




u1

u2

· · ·

uNs

 =


f1

f2

· · ·

fNc

 . (2)

In Eqn (2), for the 2D elasticity case, each Kij is a 2×2 matrix with non-zero terms where collocation

point i has source point j in its support. Vectors uj and fi are both 2 × 1. Entries in the Kij are95

the appropriate differential operator applied to basis function values at each of the j source points

in the support domain of the collocation point.

The size of the coefficient matrix in Eqn (2) is 2Nc × 2Ns in 2D and when Nc = Ns a square

system is formed that has a unique solution. However, when Nc > Ns (which is usually the case

for reasons mentioned above) an over-determined system is obtained and a suitable solver (e.g. the

least squares method) is employed to obtain the source point values. The field variable at any point

can be evaluated by

uh(x) =

N∗
s∑

j=1

φjuj, (3)

where uh(x) is an approximation of the solution at any point, N∗
s is the number of source points

in support at the point and φj is the basis function associated with the jth source point.

2.2. Generation of basis functions using max-ent schemes100

In this paper, a max-ent scheme [42] is used instead of MLS and RK methods to construct the basis

functions. MLS and RK basis functions are employed in most early strong form-based meshless

approaches but they are not strictly positive and do not possess the Kronecker-delta property.

Additional effort is therefore required to impose Dirichlet boundary conditions and to keep the

polynomial interpolants passing through collocation point values [54]. Max-ent basis functions are105

strictly valid on convex domains (but function well on non-convex domains in many cases [55, 56])

and, importantly, possess the Kronecker-delta property on the boundaries, which facilities the direct
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imposition of the essential boundary conditions and, as will be shown, leads to greater accuracy for

a given discretization.

The maximum entropy idea arises from probability theory where a set of mutually independent

events {A1, A2, ..., An} with unknown probabilities {p1, p2, ..., pn}, respectively, are considered. The

least biased probability distribution can be obtained by maximizing the informational entropy P (·)

(the specific description of uncertainty) as

maximize
(
P (A1, A2, ..., An) = P (p1, p2, ..., pn) = −

n∑
a=1

pa log pa

)
. (4)

If one replaces the probabilities by basis functions in a given defined domain then it is easy to see

that the partition of unity property is obtained. The basis functions are obtained by combining the

max-ent constraint expressed in Eqn (4) with the required linear reproducing conditions [46] and a

weight function wi to give compact support, i.e. maximising

P (φ,w) = −
N∗

s∑
i=1

φi log
( φi
wi

)
(5)

subject to (in the 1D case)
N∗

s∑
i=1

φi = 1 and

N∗
s∑

i=1

φixi = x. (6)

The local max-ent basis functions derived this way can be written as

φi(x) =
Zi
Z

(7)

where

Zi = wie
−λi(xi−x) (8)

and

Z =

N∗
s∑

i=1

Zi, (9)

and N∗
s is the number of source points in the support domain at each collocation point and λ

denotes the unique Lagrange multiplier associated with the constraints in Eqn (6) which can be
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found via a Newton process [47] as

λ(x) = arg min logZ(x, λ). (10)

A detailed explanation of max-ent basis functions and their implementation can be found in [57].

The choice of weight function is to some extent arbitrary since there is no rigorous mathematical

proof available at the moment to judge which type of weight function is better than another. In the

problems covered in this study, the highest order required are second derivatives so an appropriate

choice here for the the weight function is a cubic spline

w(r) =


2
3 − 4r2 + 4r3 0 < r ≤ 1

2

4
3 − 4r + 4r2 − 4

3r
3 1

2 < r ≤ 1

0 r > 1

, (11)

where

r =
‖x− xi‖
dm

, (12)

is the normalized radius of the support domain and dm is the size of the domain of support at each

collocation point, which is a user-defined parameter here taken as

dm = dmaxdx. (13)

where the scaling parameter dmax is typically 2.0 − 4.0 [58] and dx is the distance between the110

collocation point and the nearest source point in its support domain. Sufficient source points are

required in the domain to avoid matrix singularity problems, and the accuracy of the approximation

at any point also depends on the scaling parameter dmax.

As indicated above, PCMs usually require expressions for derivatives of higher order than re-

quired for weak form-based methods. The first derivatives of the max-ent basis functions [57] can

be expressed as

∇φi = φi

{
(xi − x)T[H−1 −H−1

N∗
s∑

k=1

φk
wk

(xk − x)⊗∇wk] +
∇wi
wi
−

N∗
s∑

j=1

φj
∇wj
wj

}
(14)
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where H is the Hessian matrix given by

H =

N∗
s∑

k=1

(xk − x)⊗ (xk − x)⊗ φk, (15)

where ⊗ is the dyadic product of two vectors, for example, for any two vectors x ⊗ y = xyT.

Similarly the second derivatives of the max-ent basis functions are115

∇∇φi =
∇φi ⊗∇φi

φi

+ φi

{
−H−1 + (xi − x) · ∇H−1 +

[ N∗
s∑

k=1

φk
wk

(
(xk − x)⊗∇wk

)]T
H−1

}

− φi

{
(xi − x) · ∇H−1

[ N∗
s∑

k=1

φk
wk

(
(xk − x)⊗∇wk

)]

+
[
(xi − x)TH−1

]
· ∇
( N∗

s∑
k=1

φk
wk

(xk − x)⊗∇wk
)}

+ φi

{
∇
(∇wi
wi

)
−

N∗
s∑

j=1

∇wj
wj
⊗∇φj −

N∗
s∑

j=1

φj∇
(∇wj
wj

)}
(16)

The derivation of this second derivative is given in Appendix A.

In Figure 2(a), the max-ent basis functions are plotted over a 1D domain, where 6 points are

located at x = 0, 0.2, 0.4, . . . , 1.0. It can be seen that the max-ent basis functions possess non-

negativity at all points and the weak Kronecker-delta property at the two boundary points which

allows direct imposition of the essential boundary conditions. The first and the second derivatives of120

the max-ent basis functions at each point in the domain are shown in Figures 2(b) and 2(c). Of note

is the fact that the second derivatives of the max-ent basis functions are sensitive to the position

of the points and distributing the collocation points and source points at the same positions may

lead to serious defects with the numerical results because of the obtained values of basis function

second derivatives. This will be discussed in the following section.125
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(a) The max-ent basis functions over a 1D domain. (b) First derivatives with respect to x.

(c) Second derivative with respect to x.

Figure 2: The max-ent basis functions and derivatives over a 1D domain.
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3. Implementation issues

3.1. A max-ent point collocation method (MEPCM)

In this section, some implementation issues associated with the proposed strong form point collo-

cation approach (called the MEPCM from here on) will be discussed. The differential operators

needed for the numerical examples in the following section are given here, all of which are for 2D

spatial domains. The differential operators for a 2D Poisson problem are

∂2u

∂x2
+
∂2u

∂y2
= fb in Ω, (17a)

u = g on Γu and
∂u

∂x
+
∂u

∂y
= h on Γt. (17b)

noting that the field variable u is a scalar. For the MEPCM the differential operators which appear

in Eqn (1) for the Poisson problem are therefore

L =
∂2

∂x2
+

∂2

∂y2
, (18a)

Lu = 1 and Lt =
∂

∂x
+

∂

∂y
. (18b)

For linear elasticity with small deformations the required differential operators are more compli-

cated. Consider an elastic solid in 2D with material properties of Young’s modulus, E and Poisson’s

ratio ν, with the domain Ω and boundary Γ (Γ = Γu ∪ Γt). Taking σ as the Cauchy stress tensor

and fb as the body force, the equilibrium equation is

∇ · σ = fb in Ω. (19)

Using the standard relation between strain and small displacements, and the constitutive law be-

tween Cauchy stress and strain with the assumption of plane strain the first differential operator

in Eqn (1) is

L =
E(1− ν)

(1 + ν)(1− 2ν)

 ∂2

∂x2 + 1−2ν
2(1−ν)

∂2

∂y2
1

2(1−ν)
∂2

∂x∂y

1
2(1−ν)

∂2

∂x∂y
∂2

∂y2 + 1−2ν
2(1−ν)

∂2

∂x2

 . (20)
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Along the Dirichlet boundary Γu, the boundary condition is given as

u = g. (21)

where g are prescribed displacements, the relevant differential operator Lu is

Lu =

 1 0

0 1

 . (22)

The Neumann boundary condition is described as

σ · n = h, (23)

where n is the unit normal vector to the Neumann boundary and h is the applied traction. The

final differential operator Lt is given as

Lt =
E(1− ν)

(1 + ν)(1− 2ν)

 ∂
∂xnx + 1−2ν

2(1−ν)
∂
∂yny

ν
1−ν

∂
∂ynx + 1−2ν

2(1−ν)
∂
∂xny

1−2ν
2(1−ν)

∂
∂ynx + ν

1−ν
∂
∂xny

1−2ν
2(1−ν)

∂
∂xnx + ∂

∂yny

 . (24)

Substituting these differential operators into Eqn (1), the expanded form of the linear system is



Lu11
Lu12

· · · Lu1Ns

Lu21
Lu22

· · · Lu1Ns

· · · · · ·

LuNg1
LuNg2

· · · LuNgNs

Lt11 Lt12 · · · Lt1Ns

Lt21 Lt22 · · · Lt2Ns

· · · · · ·

LtNh1
LtNh2

· · · LtNhNs

L11 L12 · · · L1Ns

L21 L22 · · · L2Ns

· · · · · ·

LNd1 LNd2 · · · LNdNs





u1

u2

· · ·

uNs


=



g1

g2

· · ·

gNg

h1

h2

· · ·

hNh

fb1

fb2

· · ·

fbNd



, (25)
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where Ng, Nh and Nd are the numbers of collocation points at Dirichlet and Neumann boundaries

and in the problem domain respectively (Ng + Nh + Nd = Nc). In this section, the explicit forms

of operators for both 1D and 2D problems have been obtained and they will be next used to form130

the strong form-based final linear systems.

3.2. The generation of collocation and source points

In previous papers on PCMs, there are examples of the use of regular and random distributions of

points being used [59]. In this paper, we define a parameter αp as the ratio of Nc and Ns where

αp ≥ 1. If the positions of collocation points coincide with source points, there are defects at these135

coincident points in the second derivatives; the second derivative values at these coincident positions

become very close to zero which is inconsistent with the analytical values and which then has an

effect on the accuracy of the results. The smoothed second derivatives of the basis functions can

be obtained as shown in Figure 2(c) when collocation points and source points are distributed at

different positions. The reason for this can be seen by examining the second derivatives of the basis140

functions where both (xi−x) and ∇φi are zero when the points are coincident. In order to calculate

the second derivatives of the max-ent basis functions properly, and to ensure the consequent stability

of the solutions in the MEPCM, any superposition of points should be avoided and αp should be

greater than 1. In the following examples, collocation and source points are distributed at different

positions and the number of collocation points is one greater than the number of source points in145

two directions.

4. Numerical examples

In this section, some simple numerical examples are used to demonstrate the efficiency and accuracy

of the proposed MEPCM. In order to study the performance of the Kronecker-delta property on

the boundary points, only essential boundary conditions are considered in the following examples.

As mentioned above, there are issues in imposing Neumann boundary conditions which will not be

considered in this paper although some additional constraints (conditions) could be employed in the

calculations and different distributions of source points and collocation points may be devised that

avoid the instability [53]. All examples presented have exact solutions so that clear error norms can

be calculated to show convergence rates and computational performance. In the results presented
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below the L2 error norm is used to assess error (being an appropriate measure for the types of

problems considered as discussed in [31]) and is evaluated as

e =
||uh − ue||2
||ue||2

, (26)

where uh denotes the approximation to the field variable and ue the exact solution (scalar or vector).

In the following examples, plots of L2 norms of relative error in the primary variable of solution

versus degrees of freedom are employed to demonstrate the rate of convergence of the method. The150

efficiency of the proposed method will be shown compared to the RKCM. The detailed source of

the RKCM formulations used in this paper can be found in [17].

4.1. 1D bar problem

The first problem is a 1D linear elastic bar of unit length fixed at a point x = 0 and subjected to

a body force x. For a 1D problem, the linear system is set up so that the collocation points at the

two ends satisfy the displacement boundary conditions and all collocation points inside the domain

are then set to satisfy the governing equations. The analytical solutions for the displacement and

stress field of this 1D bar problem are

u(x) =
1

E

(1

2
x− x3

6

)
and σ(x) =

(1− x2

2

)
, (27)

where here, E = 1.0. The unit length bar is discretized by a uniform distribution of collocation

points with source points located between each pair of collocation points as shown in Figure 3. The155

figure also shows sizes of the support domains for two different values of dmax. To demonstrate

the effect of the choice of dmax on accuracy, the problem has been solved using the MEPCM with

a range of values of this parameter, for varying discretizations (Ns values), and the results are

plotted in Figure 4. In analyses with dmax = 1.5, 2.0, 2.5 each collocation point has two source

points in support, however the accuracy and convergence properties differ between analyses due160

to the the effect of dm in Eqn (13) on the weighting functions embedded in the basis functions in

Eqn (11). In this problem the optimum dmax is around 2.0 with close to quadratic convergence

characteristics for all three analyses. When dmax is increased to 3.5, 4 and 8 the accuracy and

rate of convergence deteriorate, likely due to the loss of locality of the approximation (as seen in

MLS as it moves towards LS). It is particularly noticeable that the convergence rate for dmax = 8.0165
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Figure 3: A portion of the 1D bar with different sizes of support domain.

Figure 4: Error convergence rate for the 1D bar problem with different dmax.
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is very poor. From this discussion, it clearly remains difficult to predict a priori optimum values

of dmax although as a linear basis is used to construct the max-ent basis functions, the minimum

number of source points in support is 2, which provides a lower bound value for dmax. As discussed

in Section 3, source points and collocation points should not be distributed at the same positions.

When analyses are carried out with coincident points, the L2 norms of displacements are recorded170

as 0.4929, 0.4936, 0.4942, 0.4943, 0.4936, 0.7581 with Nc=Ns=119, 172, 287, 341, 1000, 2000. It is

clear the L2 norms do not converge using coincident source points and collocation points.

Figures 5(a) and 5(b) compare the MEPCM results from the “best” choice of dmax(= 2.0),

with Ns = 200 and Nc = 201, with the analytical solution, showing close agreement (note that

for clarity only 11 MEPCM results have been plotted from the 201 total values). The absolute175

displacement errors at 11 selected collocation points using the MEPCM and the RKCM are shown

in Figure 6 for different refinements. It is clear that the boundary conditions can always be imposed

accurately in the MEPCM due to the Kronecker-delta property at boundaries of the max-ent basis

functions. While in the RKCM, the displacement errors on two edge points are greater than 0.005

which has a major effect on the total L2 norm of displacement error for the whole problem. Since180

the problem is non-symmetric, it is reasonable that the errors at two ends using the RKCM are

different. The convergence rates using the two methods are shown in Figure 7 in which Ns denotes

(a) Displacement results for the 1D bar problem. (b) Stress results for the 1D bar problem.

Figure 5: 1D bar problem predictions compared to the analytical solution.

degrees of freedom in the 1D example. It is clear that the decrease in the L2 norm is greater

16



Figure 6: The displacement errors for the 1D bar problem with different Ns.

in the case of the MEPCM as compared to the RKCM. In PCMs, errors can be attributed to

Figure 7: Error convergence rate for the 1D bar problem.

boundary errors and domain errors. For the RKCM, the combination of the two effects mentioned185

above leads to the total error, while the error on the boundaries in the MEPCM is considerably

17



Figure 8: Convergence rate of strain energy for the 1D bar problem.

reduced leading to better convergence rates. In Figure 7, the errors at boundary points and in the

domain are split out and the L2 norm of relative error in the domain for refinements are presented.

In the MEPCM, the convergence rates for the whole problem and for the domain alone match

because of the accurate imposition of the boundary conditions. Using the RKCM, the L2 norm190

for the problem domain alone is smaller than the L2 norm for the whole problem and keeps the

same convergence rate as the whole problem. In Figure 8, the L2 norms of strain energy using

both the MEPCM and the RKCM are compared. Comparing Figure 7 and 8, a similar trend

is obtained for the L2 norm of displacement and strain energy. This is a clear demonstration

of the major improvement the max-ent approach gives to the MEPCM in terms of reducing the195

error associated with imposing the boundary conditions. For the 1D bar problem, comparing

accuracy and convergence using the MEPCM and the weak-form based formulation in [57], both

are better in the weak-form based method. With “strong” and “weak” form-based methods, the

fundamental difference lies the approximation. In strong formulations, all provided information

located at the discrete collocation points. All connectivities between points are avoided to decrease200

the complexities. However the weak form approximation is an average value over an integral domain

which is likely to be richer than a collocation approach with the same number of points. In this

case, unlike in [57], a high number of collocation points and source points are distributed in the
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whole domain and on the boundaries using the MEPCM to study the convergence performance.

The information at each collocation point only represents the collocation point itself rather than the205

average value over its integral domain. In the comparison between the strong-form based methods

(the MEPCM and the RKCM) and the weak-form based method in [57], the MEPCM and the

RKCM have lower convergence rates.

Computational cost is clearly of great importance for numerical methods applied to challenging

real world problems in terms of reducing the error associated with imposing the boundary condi-210

tions. Both the MEPCM and the RKCM programs in this paper run in MATLAB R2015b using

the Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHZ. Table 1 gives CPU times for both methods for

selected analyses, varying the discretization. The results show that for a given discretization, the

MEPCM leads to lower CPU times than the RKCM in all cases, and from the results discussed

above concerned with convergence, it can be concluded that the MEPCM gives greater accuracy215

in a lower CPU time. Further support for this point can be shown by plotting error against CPU

time as in Figure 9 where the advantage of the MEPCM is obvious. The computational cost of the

Figure 9: Convergence of displacement error with CPU time.

two methods is principally concentrated in the construction of the basis functions and derivatives,

and in the solution of the linear system. Both max-ent PCM and RKCM have similar overheads

for the latter and the source of the significant difference in CPU time is due to the former. In220
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Ns CPU time with MEPCM (s) CPU time with RKCM (s) Speed up

172 1.492× 10−2 2.144× 10−1 14.4
216 2.672× 10−2 3.274× 10−1 12.3
287 3.324× 10−2 5.744× 10−1 17.3
357 4.373× 10−2 8.778× 10−1 20.1
1000 2.532× 10−1 6.764× 100 26.7
2000 7.506× 10−1 2.726× 101 36.3

Table 1: CPU times for the MEPCM and RKCM in the 1D bar problem.

the RKCM, the inversion of the moment matrix and the calculation of the derivatives step by step

are both complicated and time-consuming. The chain rule is used to derive the second derivatives

of RKPM basis functions and the second derivatives of all terms in the RKPM formulation are

required which is costly especially for the second derivatives of the inverse of the moment matrix.

However, these calculations are totally avoided with max-ent basis functions, and the only poten-225

tial issue is the determination of the Lagrange multipliers λi by the Newton process because the

derivatives of the max-ent basis functions are derived analytically. In this elasticity example on

which the proposed MEPCM has been tested to date, the max-ent schemes have better accuracy

for a given discretisation than those based on RK methods.

Another useful metric in comparisons of numerical algorithms is floating point operations (flops).230

Ideally one should be able to make clear comparisons of methods, such as between the MEPCM

and the IGA methods in [31]. In some cases it is possible to break down a complex algorithm to

provide neat expressions for the order of flop counts related to the discretization (e.g. the number

of elements in the IGA methods), dimensionality and order of basis (e.g. Table 2 in [31]). Both

MEPCM and RKCM form the linear system of equations at collocation points in the same way235

as the IGA-C method of [31] so we expect flop counts for those operations to be similar here.

However, attempting to go further with the MEPCM and RKCM methods, encounters problems

in that there is no clear link between the underlying basis (which is linear here) and the order of

the computed basis functions developed via the max-ent procedure (for MEPCM at least) which is

undefined. Instead we present results to indicate trends as regards flop counts based on numerical240

experiments.

The total flops required for instances of the 1D problem, with different discretizations, are

plotted in Figure 10. The figure shows that for the same number of collocation points, the flop

count using the MEPCM is smaller than the RKCM. For this 1D problem, the total cost (if taken
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proportional to flop count) for both MEPCM and RKCM is O(N3
c ). It is hard to determine the role245

of the dimensionality here and, for the reasons outlined above, not possible to include the order of

a basis. In any case, comparisons between the IGA methods and the methods presented here are

not possible with overall flop counts as those data are not presented in [31].

Figure 10: Total flops for analysis against Nc.

Maintaining interest in flop counts but now focussing on comparison of the MEPCM with the

RKCM it is instructive to consider the cost of forming the basis functions in each. In the formation250

of the max-ent basis functions, the flops per Newton iteration are the same for each collocation

point in the same discretization although the number of iterations is not known in advance. The

cost of constructing max-ent basis functions with varying dmax is shown in Figure 11(a) in which

the gradients of all the lines are close to 2 for different dmax. The costs of constructing the max-ent

and RKPM basis functions and derivatives are shown in Figure 11(b) where it is clear that the flop255

counts for max-ent basis functions are less than the RKPM basis functions. It is also observed that

the cost of calculating RKPM basis functions derivatives is more expensive than the max-ent basis

functions derivatives because some variables calculated in the max-ent basis functions can be reused

in the calculation of the max-ent derivatives. The cost of calculating the max-ent and RKPM basis

functions in terms of the number of collocation points is seen to be O(N2
c ). Switching to a 2D260

domain and considering again just the formation of basis functions Figure 12(a) is equivalent to
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(a) Flops of max-ent basis functions with different dmax. (b) Flops of the basis functions and derivatives.

Figure 11: Computational cost of constructing the basis functions and derivatives 1D problem.

Figure 11(b) for 1D and indicates the same relation for 2D as in 1D problem, implying that the

basis function formation is not controlled by dimensionality. A further plot of flops against the

reciprocal of distance h between two nearest collocation points for a regular distribution (in Figure

12(b)) gives gradients close to 4. As for the 1D problem, the flop count in terms of Nc is equivalent265

to the flops in terms of 1
h considering the proportional relation between Nc and 1

h in 1D. Therefore,

the cost for constructing the max-ent and RKPM basis functions is conjectured to be O(( 1
h )2d)

where d is the dimension of the physical problem. Finally it is clear that in all cases, the MEPCM

is better than the RKCM.

4.2. 2D Poisson problem270

The second example is a 2D Poisson problem with Dirichlet boundary conditions on a unit square

domain. The governing equation is

∇2u(x, y) = 4, Ω ∈ (0, 1)× (0, 1) (28)
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(a) Flops of the basis functions and derivatives. (b) Flops of the basis functions and derivatives against 1/h.

Figure 12: Computational cost in a 2D domain.

with the following Dirichlet boundary conditions

ux=0 = y2 (29a)

ux=1 = 1 + y2 (29b)

uy=0 = x2 (29c)

uy=1 = x2 + 1, (29d)

where the analytical solution is

u(x, y) = x2 + y2,Ω ∈ (0, 1)× (0, 1). (30)

The collocation and source points are distributed in the x and y directions as described above and

the scaling parameter of the support domain dmax for each collocation point is 2.0. Note that for a

2D Poisson problem, there is a single degree of freedom in the field variable at each collocation and

also that the PDE contains no mixed derivatives, which simplifies the formation of the differential

operator, as compared to elasticity. For this example, four different refinements were used (Ns=121,275

Nc=144; Ns=441, Nc=484; Ns=1681, Nc=1764; Ns=2601, Nc=2704) and N
1/2
s denotes degrees of

freedom since the approximation to the field variable is a scalar at each collocation point in this

23



2D Poisson problem. Figure 13 shows convergence rates for the MEPCM and the RKCM for this

problem, in which the MEPCM clearly performs better than the RKCM. The differential operators

in 2D Poisson problems are simple and x and y components are independent without the coupling280

effect which simplifies the implementation of the governing equation and reduces the relative error.

Table 2 gives the computational times of the MEPCM and the RKCM analyses for this problem,

Figure 13: Error convergence rate for the 2D Poisson problem.

and again, the advantage of the former is clear. The corresponding ratios for CPU time vary from

2.7 (Ns = 121) to 10.8 (Ns = 2601). Compared with the 1D bar problem, these simulations take

longer since the calculation of basis functions and the derivatives in two directions are required and285

the linear solver will also be consuming more CPU time than the 1D problem, despite the change in

PDE. The speed up is lower in the first example which may also be explained by the discretization.

In a 2D domain, the distribution of points is known to have an effect on the iteration times in the

calculation of the Lagrange multipliers λi and hence the overall computational time. Although this

speed up is not as significant as seen in the 1D bar problem, it is nevertheless the case that the290

MEPCM is more efficient than the RKCM for this problem and that the speed up increases with

refinement.
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Ns CPU time with MEPCM (s) CPU time with RKCM (s) Speed up

121 5.467× 10−2 1.476× 10−1 2.7
441 2.290× 10−1 7.755× 10−1 3.4
1681 2.100× 100 1.329× 101 6.3
2601 6.295× 100 6.794× 101 10.8

Table 2: CPU times of the MEPCM and RKCM analyses of the 2D Poisson problem.

4.3. A 2D elasticity problem: a confined square domain

The third example is a linear elastic unit square domain, subjected to Dirichlet boundary conditions

(rollers on three sides and a prescribed displacement on the fourth) as shown in Figure 14. The

purpose of this numerical example is to study the performance of the elasticity problem with convex

and symmetric geometry and essential boundary conditions using the MEPCM. The analytical

Figure 14: An elasticity problem: a confined square domain subjected to a displacement v = 1 in the y direction.

solution for the displacement field for this problem is simply

u = 0 and v =
1− ν2

E
y , (31)

For 2D linear elasticity, the differential operators are stated above, in Eqns (20), (22) and (24) where

the field variable is the 2D displacement vector. The material properties used are Young’s modulus295

E = 1000 and Poisson’s ratio ν = 0.25. Uniformly scattered collocation points and source points

are used in this regular domain and the corresponding errors for different refinements of points are
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used to plot the convergence rates in Figure 15. In 2D elasticity problems, (2 × Ns)1/2 denotes

degrees of freedom given that the approximation of the field variable is a 2× 1 vector. The results

Figure 15: Error convergence rate for the 2D elasticity problem: a confined square domain.

again demonstrate that, for a given level of discretization, the error in the MEPCM is less than300

that in the RKCM. In addition, the convergence rate in the MEPCM is better. In this example,

the differential operators for elasticity problems are more complicated than for the 2D Poisson

problem. Another feature in this 2D elasticity problem is that the mixed second derivatives of the

basis functions ∂2φ
∂x∂y are required in the differential operators thus x and y directions are coupled.

In this example, the geometry and boundary conditions are symmetric and the body force for this305

elasticity problem is zero which simplifies the implementation. The CPU times for solutions using

both methods are given in Table 3 and again there appear to be clear benefits using the MEPCM.

The speed up increases with an increasing number of source and collocation points. At the same

time, however, the overall computational time in this 2D elasticity problem is longer than for the

previous 2D Poisson problem, for similar discretizations. The explanation for this is the need for310

calculation of mixed derivatives of max-ent basis functions, assembly of the larger final coefficient

matrix and the least squares solver for the over-determined system in this example, all of which

take more time than the 2D Poisson problem.
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Ns CPU time with MEPCM (s) CPU time with RKCM (s) Speed up

121 8.200× 10−2 2.010× 10−1 2.5
441 3.392× 10−1 1.176× 100 3.5
1681 3.150× 100 2.553× 101 8.1
2601 9.099× 100 8.560× 101 9.4

Table 3: CPU times for analyses using the MEPCM and the RKCM in a 2D elasticity problem: a confined square
domain.

4.4. An infinite plate with a circular hole

The final example is another classic elasticity problem: an infinite plate with a circular hole with

a far field traction p = 10 in the x direction. This numerical example is included to study the

performance of the max-ent basis functions in a non-convex problem domain. Due to symmetry,

the upper right quarter of the infinite plate, with b = 4, is taken for analysis as shown in Figure

16(a). Displacement boundary conditions are imposed at the collocation points on the four edges

(a) The problem model. (b) The discretization of points.

Figure 16: A portion of the infinite plate with a circular hole with a far field traction p = 10 in the x direction.

and the rest of the collocation points in the domain are required to satisfy the equilibrium equations.

This problem has been widely used for validation in the past and has an analytical solution [60]
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which can be expressed as

u =
10a

8G

{ r
a

(κ+ 1) cos θ +
2a

r
[(1 + κ) cos θ + cos(3θ)]− 2a3

r3
cos(3θ)

}
(32a)

v =
10a

8G

{ r
a

(κ− 3) sin θ +
2a

r
[(1− κ) sin θ + sin(3θ)]− 2a3

r3
sin(3θ)

}
(32b)

where G is the shear modulus

G =
E

2(1 + ν)
(33)

and κ is the Kolosov constant

κ =

3− 4ν plane strain

3−ν
1+ν plane stress.

(34)

r and θ are the polar coordinates as defined in Figure 16(a). Here, the problem is solved with315

the plane stress condition and E=100000, ν=0.3. In this example the domain and boundaries

are not as regular as in the previous examples and the influence of the points’ positions is more

noticeable. The (non-convex) problem domain and corresponding boundaries are discretized by 117

source points and 130 collocation points, as shown in Figure 16(b). In order to obtain the second

derivatives of the max-ent basis functions, the source points are distributed at different positions320

to the collocation points except on the four edges, since collocation points on four edges satisfy

the displacement boundary conditions and the second derivatives are not required. The singularity

problem (highlighted above) has to be avoided by adjusting the numbers and positions of points.

Since both the collocation points and source points in this example are distributed non-uniformly,

the distances between the collocation points and the source points in support are different. dmax is325

therefore adjusted to guarantee sufficient source points in the support domain of each collocation

point. This also has an effect on the iteration process for the Lagrange multipliers required in the

max-ent basis functions, and for these combined reasons in these analyses, the scaling parameter

for the support domain is set to 3.5 which is higher than used in the previous numerical examples.

The displacement solutions in Eqn 32 are applied on the boundaries as shown in Figure 16(a) so330

the displacement inside the domain should converge to the analytical solution of the displacement.

The approximation of displacements in the x component and y component are compared with the

theoretical solutions in Figure 17 which shows contour plots of the error in these two quantities.

As expected, errors on the Dirichlet boundary are very low, and the most significant source of
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error is linked to strain gradients in the domain interior, and around the circular hole because of335

the stress concentration. Comparing the errors in the x and y directions, the maximum value of

the x component displacement error is higher than the y component linked to the fact that the

far field stress is in x direction. The example also shows that the MEPCM works for this non-

convex geometry on the displacement boundary conditions however, on the circular edge the weak

Kronecker-delta property is lost.340

To study the convergence properties, the problem was solved with different discretizations using

both the MEPCM and the RKCM. It is clear from the results shown in Figure 18 that the accuracy

for a given discretization and rate of convergence of the MEPCM is higher than the equivalent

RKCM. With an increasing Nc, the convergence using RKCM degrades while the proposed method

shows good performance in this irregular geometry. Compared with a regular domain problem (e.g.345

Example 3 above) varying the number of source points for each collocation point in this example

generates different basis functions which has an effect on the value of L2 norm of displacement

errors and the bandwidth of the final coefficient matrix. This elastic plate with a circular hole

problem has also been studied in [31] and the error L2 norms using the IGA-C with varying order

of basis functions demonstrated. It was observed in [31] that the convergence rate using the IGA-C350

with the second and third order basis function was close to 2. However Figure 18 shows a higher

rate of convergence using the MEPCM plotted in terms of degrees of freedom, i.e. delivering a

rate of convergence equivalent to higher than third order IGA-C. However, as indicated above the

major differences in the basis functions and the discretizations probably invalidates a direct an

reliable comparison without further study. Table 4 compares the computational times for analyses355

using the MEPCM with the RKCM for this problem. As can be seen, when the number of degrees

of freedom is small, the speed up using the two methods is 1.9 , and the speed up increases as

the discretizations get finer. As stated above, varying the number of source points in support at

collocation points results from the non-uniform distribution of source points and collocation points

in the geometry, and increases the computational burden in both the MEPCM and the RKCM as360

compared to previous two 2D examples. However, the speed up is not seen to increase as fast as in

other two 2D examples as the discretizations get finer. This appears to be due to the non-uniform

distribution of points which has more effect on the MEPCM than the RKCM. In this example,

the percentage of computational time used in calculating the max-ent basis functions and their

derivatives is larger than the previous two 2D. Using the MEPCM improves the computational365
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(a) x - component displacement error. (b) y - component displacement error.

Figure 17: Displacement errors for the infinite plate with a circular hole problem.

Figure 18: Error convergence rate for an infinite plate with a circular hole problem.
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efficiency but the effect caused by non-uniform distribution of points cannot be ignored and may

be a significant issue for real world geometries, although that investigation is beyond the scope of

this paper. In all cases studied to date however, an increased speed up can be seen with refinement

when comparing the MEPCM and the RKCM.

Ns CPU time with MEPCM (s) CPU time with RKCM (s) Speed up

117 2.060× 10−1 3.845× 10−1 1.9
426 9.996× 10−1 3.530× 100 3.5
1681 8.009× 100 3.085× 101 3.9
2601 2.072× 101 1.166× 102 5.6

Table 4: The CPU time of the MEPCM and RKCM in an infinite plate with a circular hole problem.

5. Conclusions370

This paper has presented for the first time a point collocation method based on maximum entropy

basis functions. These functions have two properties that make them ideal for use with point

collocation methods: (i) non-negativity and (ii) a weak Kronecker delta for convex domains. Both

of these properties improve the convergence rate of the method, in particular the later removes

errors associated with the imposition of Dirichlet boundary conditions which have been shown to375

limit the convergence rate of other point collocation methods. The performance of the proposed

method was explored using four numerical examples which included 1D and 2D problems with linear

elasticity and Poisson PDEs on both convex and non-convex domains. In all cases the proposed

max-ent point collocation method (MEPCM) showed lower errors with higher rates of convergence

compared to an existing RKCM. The MEPCM also had an increasingly lower computational cost,380

with speed-ups of over 20 times for 1D problems and 10 times for 2D elasticity solutions on convex

domains. A numerical study of cost in terms of flop counts further confirms that the MEPCM is

more efficient than the RKCM and the proposed approach has been compared to the IGA-C of [31]

for one problem solved in both this and that paper. The key improvement of the MEPCM over the

RKCM is that for the same number of degrees of freedom, the computational time in calculating385

the second derivatives of the basis functions is reduced. The performance of max-ent basis functions

on non-convex domains with non-uniform point distributions was also investigated and, although

lower speed gains were realised, the method still outperformed the RKCM on all simulations in

terms of errors and CPU time.
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Appendix A. Derivation of 2nd derivatives of a local max-ent basis functions

The expression of the local max-ent basis functions are

φi =
Zi
Z

=
wie

fi(x,λ)∑N∗
s

j=1 wje
fj(x,λ)

, (A.1)

where

fi(x, λ) = −λ · (xi − x) (A.2)

and λ is the function of x. The gradient of Zi and Z are written as

∇Zi = ∇wiefi + wie
fi∇fi, (A.3)

∇∇Zi = ∇∇wiefi + 2∇wiefi∇fi + wie
fi(∇fi)2 + wie

fi∇∇fi, (A.4)

and

∇Z =

N∗
s∑

j=1

∇wjefj +

N∗
s∑

j=1

wje
fj∇fj , (A.5)

∇∇Z =

N∗
s∑

j=1

(
∇∇wjefj + 2∇wjefj∇fj + wje

fj (∇fj)2 + wje
fj∇∇fj

)
, (A.6)

where the gradient of fi(x, λ) is

∇fi =
∂fi
∂x

+
∂fi
∂λ

Dλ = λ− (xi − x)Dλ, (A.7)

∇∇fi = Dλ+ 2(Dλ)2, (A.8)
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Define r(x, λ) is a function on x and λ as

r(x, λ) =

N∗
s∑

j=1

−φj(xj − x) (A.9)

and r(x, λ) is exactly zero because of the reproducing conditions.

∇r(x, λ) =
∂r

∂x
+
∂r

∂λ
Dλ = 0, (A.10)

where
∂r

∂x
= 1−

n∑
j=1

φj(xj − x)
∇wj
wj

(A.11)

and

J(x, λ) =
∂r

∂λ
=

N∗
s∑

j=1

φj(x, λ)(xj − x)⊗ (xj − x)− r(x, λ)⊗ r(x, λ). (A.12)

Then Dλ is solved as

Dλ = −J−1 + J−1

N∗
s∑

j=1

φj(xj − x)
∇wj
wj

(A.13)

The second derivatives of the basis function is

∇∇φi =
∇∇Zi
Z

− 2
∇Zi∇Z
Z2

− Zi∇∇Z
Z2

+
2Zi(∇Z)2

Z3
. (A.14)

Substitute the Equation (A.3)-(A.6) into Equation (A.14) then the expression of the second deriva-

tives of the basis functions are obtained. The second partial derivatives respect to x and y are395

shown in Figure 19.
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