E.R. Phillips
Microscale evidence of liquefaction and its potential triggers during soft-bed deformation within subglacial traction tills
Phillips, E.R.; Evans, D.J.A.; van der Meer, J.J.M.; Lee, J.R.
Abstract
Published conceptual models argue that much of the forward motion of modern and ancient glaciers is accommodated by deformation of soft-sediments within the underlying bed. At a microscale this deformation results in the development of a range of ductile and brittle structures in water-saturated sediments as they accommodate the stresses being applied by the overriding glacier. Detailed micromorphological studies of subglacial traction tills reveal that these polydeformed sediments may also contain evidence of having undergone repeated phases of liquefaction followed by solid-state shear deformation. This spatially and temporally restricted liquefaction of subglacial traction tills lowers the shear strength of the sediment and promotes the formation of “transient mobile zones” within the bed, which accommodate the shear imposed by the overriding ice. This process of soft-bed sliding, alternating with bed deformation, facilitates glacier movement by way of ‘stick-slip’ events. The various controls on the slip events have previously been identified as: (i) the introduction of pressurised meltwater into the bed, a process limited by the porosity and permeability of the till; and (ii) pressurisation of porewater as a result of subglacial deformation; to which we include (iii) episodic liquefaction of water-saturated subglacial traction tills in response to glacier seismic activity (icequakes), which are increasingly being recognized as significant processes in modern glaciers and ice sheets. As liquefaction operates only in materials already at very low values of effective stress, its process-form signatures are likely indicative of glacier sub-marginal tills.
Citation
Phillips, E., Evans, D., van der Meer, J., & Lee, J. (2018). Microscale evidence of liquefaction and its potential triggers during soft-bed deformation within subglacial traction tills. Quaternary Science Reviews, 181, 123-143. https://doi.org/10.1016/j.quascirev.2017.12.003
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 3, 2017 |
Online Publication Date | Dec 16, 2017 |
Publication Date | Feb 1, 2018 |
Deposit Date | Dec 6, 2017 |
Publicly Available Date | Dec 16, 2018 |
Journal | Quaternary Science Reviews |
Print ISSN | 0277-3791 |
Electronic ISSN | 1873-457X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 181 |
Pages | 123-143 |
DOI | https://doi.org/10.1016/j.quascirev.2017.12.003 |
Public URL | https://durham-repository.worktribe.com/output/1338870 |
Files
Accepted Journal Article
(7.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Glaciation - A Very Short Introduction.
(2018)
Book
Till - A glacial process sedimentology
(2017)
Book
Glaciers and Glaciation
(2010)
Book
Classic Landforms of the Loch Lomond Area.
(2003)
Book
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search