Oscar Marmon
On the Hasse Principle for quartic hypersurfaces
Marmon, Oscar; Vishe, Pankaj
Abstract
We establish the Hasse principle for smooth projective quartic hypersurfaces of dimension greater than or equal to 28 defined over Q.
Citation
Marmon, O., & Vishe, P. (2019). On the Hasse Principle for quartic hypersurfaces. Duke Mathematical Journal, 168(14), 2722-2729. https://doi.org/10.1215/00127094-2019-0025
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 26, 2019 |
Online Publication Date | Sep 18, 2019 |
Publication Date | Sep 1, 2019 |
Deposit Date | Dec 20, 2017 |
Publicly Available Date | Oct 16, 2019 |
Journal | Duke Mathematical Journal |
Print ISSN | 0012-7094 |
Electronic ISSN | 1547-7398 |
Publisher | Duke University Press |
Peer Reviewed | Peer Reviewed |
Volume | 168 |
Issue | 14 |
Pages | 2722-2729 |
DOI | https://doi.org/10.1215/00127094-2019-0025 |
Public URL | https://durham-repository.worktribe.com/output/1337930 |
Files
Accepted Journal Article
(583 Kb)
PDF
You might also like
On the Hasse Principle For Complete Intersections
(2024)
Journal Article
Rational points on complete intersections over 𝔽𝒒(𝒕)
(2022)
Journal Article
A sparse equidistribution result for $(\mathrm{SL}(2,\mathbb{R})/\Gamma_0)^{n}$
(2021)
Journal Article
Rational curves on smooth hypersurfaces of low degree
(2017)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search