Shari P. Finner
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations
Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul
Authors
Abstract
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
Citation
Finner, S. P., Kotsev, M. I., Miller, M. A., & van der Schoot, P. (2018). Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations. The Journal of Chemical Physics, 148(3), Article 034903. https://doi.org/10.1063/1.5010979
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 27, 2017 |
Online Publication Date | Jan 18, 2018 |
Publication Date | Jan 18, 2018 |
Deposit Date | Jan 4, 2018 |
Publicly Available Date | Jan 10, 2018 |
Journal | Journal of Chemical Physics |
Print ISSN | 0021-9606 |
Electronic ISSN | 1089-7690 |
Publisher | American Institute of Physics |
Peer Reviewed | Peer Reviewed |
Volume | 148 |
Issue | 3 |
Article Number | 034903 |
DOI | https://doi.org/10.1063/1.5010979 |
Public URL | https://durham-repository.worktribe.com/output/1337638 |
Related Public URLs | https://arxiv.org/abs/1801.00993 |
Files
Published Journal Article
(707 Kb)
PDF
Accepted Journal Article
(355 Kb)
PDF
Copyright Statement
© 2018 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Finner, Shari P., Kotsev, Mihail I., Miller, Mark A. & van der Schoot, Paul (2018). Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations. The Journal of Chemical Physics 148(3): 034903 and may be found at https://doi.org/10.1063/1.5010979
You might also like
Nearest-neighbor connectedness theory: A general approach to continuum percolation
(2021)
Journal Article
Control of Superselectivity by Crowding in Three-Dimensional Hosts
(2021)
Journal Article
Controlling Fragment Competition on Pathways to Addressable Self-Assembly
(2018)
Journal Article
Nucleation on a sphere: the roles of curvature, confinement and ensemble
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search