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We investigate percolation in mixtures of nanorods in the presence of external fields that align or
disalign the particles with the field axis. Such conditions are found in the formulation and processing
of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus
is on the effect of length polydispersity, which—in the absence of a field—is known to produce
a percolation threshold that scales with the inverse weight average of the particle length. Using a
model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we
show that a quadrupolar field always increases the percolation threshold and that the universal scaling
with the inverse weight average no longer holds if the field couples to the particle length. Instead,
the percolation threshold becomes a function of higher moments of the length distribution, where
the order of the relevant moments crucially depends on the strength and type of field applied. The
theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate
finite size effects by exploiting the fact that the universal scaling of the wrapping probability function
holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold
of a polydisperse mixture can be lower than that of the individual components, confirming recent work
based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields.
Our work shows how the formulation of nanocomposites may be used to compensate for the adverse
effects of aligning fields that are inevitable under practical manufacturing conditions. Published by
AIP Publishing. https://doi.org/10.1063/1.5010979

I. INTRODUCTION

Composite nanomaterials have attracted a lot of attention
due to their wide range of applications. The mechanical, ther-
mal, and electrical properties of a polymeric host medium can
be greatly enhanced by the addition of a sufficient amount
of nanofillers.1 In order to design a material with the desired
properties, it is crucial to understand and control the forma-
tion of a system-spanning network of nanofillers inside the
host matrix, which happens above a critical concentration of
filler material called the percolation threshold.2 For many tech-
nological applications, the percolation threshold is desired
to be as low as possible, so as not to adversely affect other
properties of the host material, such as mechanical stability,
optical transparency, and ease of processing. A case in point
is carbon nanotubes, which are used in composites for elec-
tromagnetic interference shielding and transparent electrodes,
but can strongly reduce the transparency of the material if their
concentration is too high.3,4

Not surprisingly, a huge effort has been undertaken to
remedy this problem and reduce the percolation threshold
of carbon-nanotube-based materials. There are many factors
that conspire against the formation of a conducting network,
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including the quality of the nanotubes, their mean aspect ratio,
interactions, and the processing of the composite.5–10 Process-
ing steps like compression molding, spin coating, extrusion,
or drawing almost invariably cause some degree of alignment
of the particles, and upon solidification, the aligned structures
are frozen in to remain present in the final product.11 The-
ory,10,12–14 experiments,8,11,15 and computer simulations16–18

agree that particle alignment generally leads to higher perco-
lation thresholds. A natural question that presents itself is as
follows: Can we mitigate the adverse effects of alignment on
the percolation threshold by controlling the formulation of the
composite?

We argue that a sensible candidate for this would be the
polydispersity level of the filler material. It is well known,
theoretically and experimentally, that polydispersity has a sig-
nificant impact on the percolation threshold.12,14,19–27 Despite
the strong influence of alignment and polydispersity, only lim-
ited effort has been undertaken to elucidate the interplay of
these two effects. Dissipative particle dynamics simulations
of aligned fillers suggest that less oriented short rods can facil-
itate network formation by connecting between more strongly
aligned long ones.28 This has been confirmed theoretically by
mapping the continuum percolation problem onto percolation
on a Bethe lattice.14

Applying continuum percolation theory, we show that the
percolation threshold of polydisperse fillers can indeed be
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lower than that of the corresponding monodisperse ones. In
fact, the known scaling of the percolation threshold with the
inverse weight average of the particle length distribution is
broken in the presence of an external field. Our conclusions
confirm and generalize earlier findings and base them on a
firm theoretical footing, which allows for natural extensions
in other directions. One such extension of the theory would be
to investigate the influence of confinement in thin films, which
we intend to do in the near future.

In Sec. II, we first outline the connectedness percolation
formalism for length-polydisperse uniaxial particles with an
arbitrary orientational distribution function. Next, we rely on
a Boltzmann weight to specify the orientational distribution in
Sec. III, presuming a quadrupole alignment field that mimics
the impact of electric, magnetic, or elongational flow fields
by explicitly coupling to the particle length. Details of our
simulation method are given in Sec. IV, where we present a
systematic and internally consistent way of determining the
bulk percolation threshold in a finite size simulation. This
requires special attention if the system is anisotropic. Sec-
tion V focusses on the percolation threshold of monodisperse
fillers, where we demonstrate that a quadrupole field always
raises the percolation threshold and compare our theoretical
predictions to Monte Carlo simulation results. Our results are
extended to polydisperse fillers in Secs. VI and VII. Using
an example of a bidisperse system, we first show in Sec. VI
that the universal scaling of the percolation threshold with the
inverse weight average is broken in case the external field cou-
ples to the length of the filler particles. Next, we demonstrate
how this can be exploited to lower the percolation threshold
by changing the formulation of the composite. In Sec. VII,
we give a generalized expression for the percolation threshold
with an arbitrary length distribution of the fillers. Finally, in
Sec. VIII, we summarize our main results and set them side
by side with previously published theoretical and simulation
studies. We further discuss the validity of our assumptions and
provide suggestions for future directions.

II. CONNECTEDNESS PERCOLATION THEORY

To investigate the percolation of rods in a composite
material, we assume the network to be formed in the fluid
stages of material processing. This way, the resulting parti-
cle configuration is in thermal equilibrium and can be studied
theoretically using the framework of connectedness percola-
tion theory, where connectedness is typically defined via a
distance criterion. Connectedness percolation theory is based
on the Ornstein-Zernike equation, which plays a central role in
liquid state theory.29–31 It treats two-body connectedness prob-
abilities analogously to liquid state correlation functions and
has been widely applied in the context of spherical and non-
spherical particles and mixtures thereof.2,6,9,32,33 In particular
for slender rod-like particles, the agreement with results from
Monte Carlo simulations is excellent.20,21,25,34,35

Here, we apply connectedness percolation theory to car-
bon nanotubes that we model as penetrable non-interacting
spherocylinders of variable length and fixed width. In our
model, two particles are directly connected if they overlap,
which reduces the problem to purely geometric percolation.

The rods present in our dispersion are modeled as perfect cylin-
ders with a length Li and a constant diameter λ, end-capped
with hemispheres of the same diameter. There is a fraction xi

of rods of length Li, where i = 1, 2, . . ., n. Here, n denotes
the number of components, which can, in principle, be infi-
nite. We note that the diameter λ of our model rods is not
equal to the “hard core” diameter of the carbon nanotubes but
must somehow be related to the average tunneling distance
of charge carriers in the host matrix. We choose not to model
these details explicitly and postpone a discussion of potential
implications to Sec. VIII.

In order to determine the percolation threshold in the ther-
modynamic limit, we need to calculate the particle density
at which the average cluster size, i.e., the mean number of
connected particles, diverges. The mean cluster size

S =
〈
Ti(u)

〉
i,u (1)

is equal to the average of all cluster sizes T i(u) of clusters that
consist of at least one test rod of length Li and orientation u.
Here, u is the unit vector along the principal body axis, and
〈. . . 〉i,u = ∫ du

∑
i xiψi(u)(. . . ) is an average over the length

distribution xi and orientational distribution ψi(u). The orien-
tational distribution function couples to the external field and
may also be a function of the length of a particle. We discuss
its functional form in Sec. III.

Within connectedness percolation theory, T i(u) needs to
be solved from a generalized connectedness Ornstein-Zernike
equation that takes the form20,21

Ti(u)=1+lim
q→0

ρ
〈
Ĉ+

ij
(
q, u, u′

)
Tj(u′)

〉
j,u′

. (2)

Here, ρ denotes the overall number density of filler particles in
the dispersion and Ĉ+

ij (q, u, u′) is the spatial Fourier transform
of the direct connectedness function C+, with q being the wave
vector. As, by definition, a rod is always connected to itself,
the minimum cluster size is one, which leads to the first term
on the right-hand side of Eq. (2). The second term denotes the
number of other particles of length Lj and orientation u′ that
our test rod may additionally be connected to. In the limit of
vanishing wave vector, we effectively average over all possible
positions of other particles within the same cluster.

To close this self-consistent integral equation, we invoke
the second virial approximation or chain-sum approxima-
tion, which becomes exact in the limit of infinite aspect
ratios.21,35 In practice, it turns out to be quantitative for aspect
ratios18,35 L/λ & 400 and is thus a suitable approximation
for carbon nanotubes.27 Within the second virial approxima-
tion6,30 Ĉ+

ij (q, u, u′)= f̂ +
ij (q, u, u′), where f̂ + denotes the spa-

tial Fourier transform of the connectedness Mayer function
f + = exp(�βU+) and β the inverse thermal energy. The con-
nectedness potential U+ is zero if the particles are connected
and infinitely large otherwise. Thus, f̂ +

ij (0, u, u′) corresponds
to the contact volume of two rods, i.e., the volume that the
center of mass of one rod can trace out so that it still overlaps
with a fixed second rod.

The contact volume of two spherocylinders of lengths Li

and Lj and orientations u and u′ is given by

f̂ +
ij (0, u, u′) = 2λLiLj | sin γ(u, u′)|

+ π(Li + Lj)λ
2 + 4

3πλ
3, (3)
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where γ(u, u′) is the angle between the main body axes of
the rods.12,36 The impact of the λ2 and λ3 terms on the per-
colation threshold depends on the level of particle alignment
as well as the aspect ratio of the rods. It turns out to be
negligible for aspect ratios for which the second virial approx-
imation is accurate,21 so we ignore these terms in most of our
analyses.

The mathematical problem that we seem to face is that
we need to insert Eq. (3) for the direct connectedness func-
tion in Eq. (2) and solve for T. This is not quite true
since we are only interested in the average S = 〈Ti(u)〉i,u of
this function. If we average Eq. (2), we obtain 〈Ti(u)〉i,u
= 1 + limq→0 ρ

〈〈
f̂ +
ij (q, u, u′)

〉
i,uTj(u′)

〉
j,u′

. This equation still

contains the function T unless we take its average out of the
convolution integral. Allowing for this ad hoc approximation,
we obtain the solution

S =
(
1 − ρ〈〈f̂ +〉i,u〉j,u′

)−1
, (4)

which diverges at a critical particle density

ρp = 〈〈f̂
+〉i,u〉

−1
j,u′ . (5)

This result physically means that, on average, at least one rod
per contact volume is required to form a system-spanning net-
work. As the contact volume, and therefore the overlap proba-
bility of two rods, is maximal for isotropic configurations and
minimal for perfectly parallel rods, any type of particle align-
ment is expected to increase the percolation threshold.10,12,14

This agrees with what is seen in experiments15 and in computer
simulations.17,18,37

However, this pre-averaging approximation (5) turns out
to be exact only for isotropic and perfectly parallel monodis-
perse rods.21 For polydisperse filler particles, it fails to intro-
duce the correct moments of the particle length distribu-
tion even in isotropic configurations,12,14,19–22 where the cor-
rect percolation threshold reads ρp = 2/πλ〈L2〉.21 Below, we
will make a detailed comparison between the pre-averaging
approximation and a systematic approximation scheme. But
first, let us discuss in what way the orientational distribution
function of the rods depends on the strength of an external
alignment field, which we choose to be of the quadrupole
type.

III. THE EXTERNAL ALIGNMENT FIELD

In the case of non-interacting rods in an external field, the
orientational distribution function ψ needed to evaluate the
averages 〈. . .〉u is given by the normalized Boltzmann factor
of the external potential U,

ψ = N−1 exp (−βU) . (6)

We presume the aligning field U to be of the quadrupole type
so that

βU = K cos2 ϑ, (7)

and the normalisation factor becomes

N = 2π sgn(K)
√
π/K erf(

√
K), (8)

where ϑ is the polar angle of a rod with the field direc-
tion and K denotes a dimensionless measure of the field
strength. In the case of negative field strengths, rods are

preferentially aligned parallel to the field direction, whereas for
positive values, they orient perpendicular to that. The degree
of alignment can be quantified by the nematic order parame-
ter 〈P2〉 =

(
3〈cos2 ϑ〉 − 1

)
/2, which we can calculate exactly

from the normalisation as 〈P2(K)〉 = − 3
2N dN/dK− 1

2 . It is 1 for
perfectly parallel rods, which corresponds to the field strength
K→�∞, and zero for isotropic rods, i.e., for vanishing fields
K = 0. If K →∞, the rods are perfectly “disaligned,” i.e., they
are isotropically oriented perpendicular to the field direction
with 〈P2〉 = �1/2.

Experimentally, the alignment of carbon nanotubes can
be caused by electric38–43 or magnetic fields,44,45 elongational
flow,15,46,47 shear,48 or liquid crystalline solvents.49–51 The
exact realisation of the field strength parameter K depends
crucially on the type of field applied. A rod submerged in
a thermotropic nematic host medium, for instance, feels a
quadrupole type potential, with K = LλWπ/3 under weak
anchoring conditions, where W is the average anchoring
energy.51 In the case of an electric field, the dimensionless field
strength is given by K = �β∆αE2/2, where E is the electric
field strength and∆α is the rod’s polarisability anisotropy. Sim-
ilarly, the magnetic quadrupole field gives K =�β∆χH2/2 with
the magnetic field strength H and the susceptibility anisotropy
∆χ. Using these expressions, we assume that the rods do not
possess a permanent dipole moment and neglect dipole-dipole
interactions, which are known to cause lateral clustering or
chain formation.41,52,53

An effective quadrupole field can, in principle, also be
realized by an elongational flow field,54,55 which is the only
flow field that allows for a quasi-static treatment. In the case
of a uniaxial elongation or compression, the field strength
is defined as K = −3ε̇/4Dr, where Dr denotes the rota-
tional diffusion coefficient of a straight rod and ε̇ is the strain
rate, which is positive for elongational flow and negative for
compression.47,55

It is crucial to note that the dimensionless field strength
K typically increases with the rod length and that, as a result,
alignment fields affect long particles more strongly than short
ones. How strongly K changes with L depends on the type of
field applied. The surface energy of a rod submerged in a ther-
motropic nematic solvent, for instance, increases linearly with
the surface area and thus with the length of the rod.51,56 Also in
the case of an electric or magnetic field, we presume the rod’s
polarisability and susceptibility anisotropy to be proportional
to the polarisable volume and therefore to the rod length L, at
least in the limit of large enough aspect ratios. In practice, this
turns out to be accurate both for metallic and semiconducting
carbon nanotubes in magnetic45 and electric fields,57,58 again
provided that the particles are long enough.

The rotational diffusion coefficient Dr, which becomes
relevant in the case of a hydrodynamic flow field, depends
on the particle length in a non-trivial way. It is well known
that, in dilute dispersions, Dr ∝ L�3 if we neglect the loga-
rithmic correction.55 In the semidilute regime, where the rods
are entangled, it has been proposed55,59 that Dr ∝ L�9 even
though the exact scaling has been subject to extensive debate.
Other theoretical models60 and experimental work61 find the
relations Dr ∝ L�7 and Dr ∝ L�5.7, respectively. While the
exact scaling of Dr in the semidilute regime remains a matter
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of contention, it is clear that the rotational diffusion coefficient
decreases with some power of the length and that this power
is larger than 3.

We conclude that the orientational distribution function
depends on the particle length Li to a certain power P that is
characteristic for the type of field applied. While this power
is positive in most physical situations, it is in principle also
possible to fabricate nanoparticles with P < 0, where short
rods align more strongly than long ones.62 In order to account
for the coupling between the particle length and the external
field, we write the dimensionless field strength as

K = K0

(
Li

λ

)P

(9)

with K0 being a bare field strength parameter that we do not
specify further and Li/λ being the aspect ratio of the rod. For

weak fields, 〈P2〉i ∼ −
2
15 K0

(
Li
λ

)P
+· · · , showing that the larger

the P the weaker the field needs to be in order to obtain a
significant degree of order. As we shall see, this will have a
significant impact on the percolation threshold for bidisperse
mixtures of short and long rods, both in theory and simulations.
However, before proceeding to the predictions of our theory,
we first discuss our Monte Carlo algorithm for anisotropic rod
mixtures in Sec. IV.

IV. MONTE CARLO SIMULATIONS

To simulate the model of fully penetrable, non-interacting
spherocylinders in a quadrupole field as introduced in Sec. III,
we generate explicit Boltzmann-distributed configurations of
the rods and perform a cluster analysis to detect percolation.
Since the positions and orientations of ideal objects are com-
pletely uncorrelated, independent configurations of sphero-
cylinders are readily generated by random sequential insertion
into the simulation cell without the need for cluster moves
or neighbor lists. The centers of the spherocylinders are uni-
formly randomly distributed within a cubic periodic cell of
length Lbox. The external field is oriented in the z direction,
and the azimuthal angles of the spherocylinders about this axis
are uniformly randomly distributed. The thermal distribution
of polar angles defined by Eqs. (6) and (7) can, in principle,
be generated by transformation of a uniform random devi-
ate. However, to do so for both aligning and disaligning fields
requires the efficient and accurate evaluation of the inverse
error function for real and imaginary arguments, respectively.
Here, we take the simpler approach of sampling the polar angle
of each spherocylinder by Metropolis Monte Carlo steps in
cos ϑ. For a smooth one-dimensional function like Eq. (7) such
steps rapidly randomize the orientations within the required
thermal distribution.

Let p(φ, L; Lbox) be the probability that a configuration in
a simulation of spherocylinders of length L at packing fraction
φ = Nπλ2(2λ + 3L)/(12L3

box) contains a percolating cluster,
where N is the number of spherocylinders. In the thermody-
namic limit Lbox →∞, this probability would be a sharp step
function, p(φ, L;∞) = Θ

(
φ − φp(L)

)
, but for finite Lbox, the

probability becomes a smooth sigmoidal function of φ. Skvor
et al.63 have shown that φp can nevertheless be extracted from
simulations by exploiting the scaling properties of p(φ, L; Lbox)

with Lbox. To do this, it is essential to define a percolating clus-
ter by a “wrapping” criterion, which requires that any particle
in the cluster is connected to its periodic images by a contigu-
ous path of contacts through the cluster; it is not sufficient for
the cluster merely to have a physical extent greater than Lbox.
With this definition, curves of p(φ, L; Lbox) as a function of
φ have a common crossing point for all values of Lbox. Since
this property must also apply in the thermodynamic limit, the
crossing point derived from two different values of Lbox gives
an accurate estimate of φp.

For systems of spherical64 or isotropically oriented par-
ticles,65 the common crossing point tends to lie just below a
probability of 0.5. Hence, in such cases, a reasonable estimate
of φp can be obtained from simulations at a single value of Lbox

by locating the point where the probability passes through 0.5.
However, in the present study, the (dis)alignment of particles
by the external field leads to a significant change in the sig-
moidal shape of p(φ, L; Lbox). Curves from different Lbox still
have a common crossing point, but the value of the probability
at the crossing shifts further from 0.5 as the magnitude of the
field is increased. Hence, in the anisotropic system, it is essen-
tial to determine φp from a scaling analysis and not to rely
on an arbitrary threshold in the probability. Failing to apply
the scaling analysis can even lead to the qualitatively incorrect
prediction that weak alignment of the rods slightly lowers the
bulk percolation threshold.

Figure 1 illustrates the use of the scaling analysis to
determine the percolation threshold of spherocylinders in an
aligning field. Increasing Lbox results in sharper sigmoidal
curves of p(φ, L; Lbox) and reveals a common crossing point.
In the figure, two percolation probabilities are shown: one
for wrapping across the periodic boundary conditions in the
direction of the field z and the other for wrapping in at least
one of the orthogonal directions (x–y). Overall, the two sets
of curves are mutually displaced with respect to the packing
fraction. This shows that for a finite, cubic sample at a given

FIG. 1. Percolation probability of ideal spherocylinders of aspect ratio
L/λ = 50 in an aligning field K = �5 from Monte Carlo simulations, sam-
pling 50 000 configurations per point. Open symbols show the probability of
observing a cluster that wraps the cubic simulation cell in the direction z of the
field, while closed symbols refer to wrapping in at least one of the perpendic-
ular directions. For each direction, probabilities for three cell lengths Lbox are
shown. Each set of curves has a common crossing point and the two crossing
points occur at the same packing fraction (dashed vertical line), defining the
percolation threshold in the bulk limit. See supplementary material for raw
data.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-005804
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packing fraction, the probability of percolation in the direc-
tion of the field is greater than in the orthogonal directions.
This observation gives the impression that the material has
an anisotropic percolation threshold. However, in addition to
the overall displacement between the two sets of curves, there
is a difference in their sigmoidal shapes, and this causes the
crossing points to occur at different percolation probabilities.
This change in shape is visible in Fig. 1, where the curves
for percolation in the z direction initially rise less steeply than
those for x–y percolation. The scaling analysis reveals that
as the field strength increases, the crossing points for parallel
and perpendicular percolation shift in opposite directions on
the probability axis. This effect exactly counteracts the over-
all horizontal displacement of the curves and results in the
crossing points occurring at the same value of the packing
fraction. Hence, although the distribution of particle orienta-
tions is anisotropic, the percolation threshold itself is isotropic
in the bulk limit.

The origin of the apparent discrepancy in finite-sized sim-
ulations is that the correlation lengths are different in the
directions parallel and perpendicular to the field. As a result,
clusters below the percolation threshold are non-spherical on
average. Although the correlation lengths grow at different
rates as the percolation threshold is approached from below,
it has been predicted theoretically that they should diverge at
the same packing fraction.10 It has also been shown in simula-
tions of hard ellipsoids that the difference between the parallel
and perpendicular percolation thresholds decreases systemat-
ically as the simulation size is increased.18 We believe that
our simulations are the first to show explicitly that the differ-
ence vanishes completely in the bulk limit, giving an isotropic
percolation threshold.

The same analysis may be applied in the presence of poly-
dispersity in addition to the external field. In the simulations
of bidisperse mixtures, each rod is randomly assigned one
of the two lengths according to the desired target distribu-
tion in each generated configuration. Hence, the proportion
of each species fluctuates slightly from one configuration to
another, but the average over many configurations is equal to
the target average. In the present work, all points in p(φ, L;
Lbox) are obtained from at least 5000 independent configu-
rations. To obtain φp from systems of two different sizes, we
locate the crossing point by linear interpolation between points
typically differing by about 0.1 in probability. The statistical
uncertainty in Monte Carlo data presented in the figures is
below 0.2%.

At low field strengths, where the distribution of polar
angles is broad, cubic boxes were used with Lbox equal to
3.5 and 5 times the length of the longer species in the mixture.
At higher field strengths, where at least the longer species is
strongly aligned along the z axis, elongated cells of dimen-
sions 2L × 2L × 4L and 3L × 3L × 6L were used. Note that
these two elongated cells have identical aspect ratios, which
is essential in order to obtain a common crossing point for
systems of different size, analogous to Fig. 1. For a family of
cells with the same aspect ratio but different sizes, the curves
of p(φ) differ only in their width, and can be scaled about their
crossing point to collapse onto each other.63 Moving from a
cubic to an elongated simulation cell alters the shape of p(φ),

creating a new set of scalable curves when the size of the cell
is changed at a fixed aspect ratio. These curves have a common
crossing point at a different value of the probability compared
to the cubic cells. However, the packing fraction at which the
crossing occurs is the same for a family of cubic cells as for
a family of elongated cells. Hence, an elongated cell reaches
the same result as a cubic cell but is more efficient for highly
aligned systems because it contains fewer particles.

Although it is computationally trivial to generate con-
figurations of ideal rods of any length, it does become more
demanding to evaluate φp for longer rods using the methods
described above. This is because more rods must be simu-
lated when L is greater. In a cubic box with edge measured
as a multiple of L, the number of particles for a given num-
ber density increases as L3. Counterbalancing this increase
is the approximate scaling of φp with 1/L and the fact that
the volume of an individual spherocylinder is approximately
proportional to L. Hence, the number of rods required to fol-
low the percolation threshold increases roughly linearly with
L overall. However, the time taken for the cluster analysis
scales approximately as the square of the number of particles
present. Therefore, the computational cost increases roughly as
L2. The largest systems simulated in the present work involve
more than 60 000 rods. The cluster analysis of a single con-
figuration may therefore include up to 1.8 × 109 checks for
pairwise overlaps between rods. Hence, these simulations are
unusual in that it is far more costly to analyze the configurations
than to obtain an ergodic sample of configurations in the first
place.

V. MONODISPERSE RODS

Before discussing how polydispersity and an external field
affect the percolation threshold of ideal spherocylinders, we
first focus on the external field alone. This allows us to explain
more clearly the way we calculate the percolation threshold
from the governing equations and to discuss the strengths and
deficiencies of our theoretical approach.

From Eqs. (1) and (2), we calculate the percolation thresh-
old ρp of monodisperse fillers in an external field by making
use of the cylindrical symmetry of the problem. Because the
orientational distribution function ψ(ϑ) is independent of the
azimuthal angle ϕ of the rods, the ϕ-average only requires the
integration of |sin γ(u, u′)|. Expanding the integral kernel in
Legendre polynomials P2n and using the addition theorem for
spherical harmonics,66,67 we obtain∫ 2π

0

��sin γ(u, u′)��dϕ = 2π
nmax∑
n=0

d2nP2n(cos ϑ)P2n
(
cos(ϑ′) ,

(10)

with the coefficients d0 = π
/
4 and, for n > 0,

d2n = −π(4n + 1)
(2n − 3)!!(2n − 1)!!

22n+2n!(n + 1)!
, (11)

where !! denotes the double factorial.66 In principle, the upper
bound nmax → ∞, but in practice, we truncate the series and
choose nmax to produce a sufficiently accurate prediction for
the percolation threshold. Inserting this into Eq. (2) results in
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an expression for T which only depends on the polar angle ϑ,

T (ϑ) = 1 + 2ρλL2
nmax∑
n=0

d2nP2n(cos ϑ)
〈
P2n(cos ϑ′)T (ϑ′)

〉
ϑ′ .

(12)

Here, we have dropped the indices i and j to stress the monodis-
perse nature of the filler particles and have ignored the end-cap
corrections to the contact volume.

In order to solve this self-consistent equation and deter-
mine the percolation threshold for arbitrary field strengths,
we need an expression for the moments 〈P2n(cos ϑ′)T (ϑ′)〉ϑ′ .
Multiplying Eq. (12) with an even Legendre polynomial
P2l(cos ϑ) and subsequent averaging over ϑ leads to the fol-
lowing set of linear equations with a number nmax + 1 of
unknowns:

〈P2l(cos ϑ)T (ϑ)〉ϑ = 〈P2l(cos ϑ)〉ϑ + 2ρL2λ

nmax∑
n=0

d2n 〈P2l(cos ϑ)

×P2n(cos ϑ)〉ϑ
〈
P2n(cos ϑ′)T (ϑ′)

〉
ϑ′ .

(13)

Formally, the solution of this set of equations can be
obtained by inverting the (nmax + 1)2-matrix. To determine
the critical density ρp at which the cluster size S diverges,
however, an exact expression for S is not needed. Instead, it
is sufficient to set the determinant of the matrix equal to zero,
which we do analytically using Wolfram Mathematica.68 The
resulting general expression for the percolation threshold is
unwieldy so we do not reproduce it here. Instead, we illustrate
our findings graphically.

Introducing the dimensionless filler concentration
c = φL/λ = ρλL2π/4, we scale out the known universal length
dependence of the zero-field percolation threshold φp = λ/2L.
In Fig. 2, we compare the percolation threshold within the pre-
averaging approximation, Eq. (5), to solutions obtained with
the full Ornstein-Zernike equation (12) for orders up to nmax

= 3. Note that this figure is universal, for the aspect ratio of

FIG. 2. Percolation threshold of a monodisperse dispersion of ideal rods in
terms of the dimensionless concentration c = πL2λρ/4 versus the field strength
K in the limit of infinite aspect ratio L/λ→∞. Here, L denotes the length of the
rods, λ denotes their width, and ρ denotes the number density. Solid, dashed,
and dashed-dotted lines: solutions of Eq. (12) with nmax = {1, 2, 3}. Dotted
line: pre-averaging approximation, Eq. (5). The non-linear top axis shows the
nematic order parameter 〈P2〉 of the rods that depends on the external field
applied. Inset: relative error of the pre-averaging approach (PAA) with respect
to the nmax = 3 full solution. See supplementary material for raw data.

particles is implicit in the scaled concentration and the field
strength. Indicated also is the order parameter shown on the
upper horizontal axis. The figure shows that nmax = 1 is accu-
rate within one per cent for order parameters �0.44 ≤ 〈P2〉

≤ 0.66. The relative error of the percolation threshold obtained
for a truncation after nmax = 2 with respect to the solution
for nmax = 3 is found to be lower than 1% for nematic order
parameters �0.5 ≤ 〈P2〉 ≤ 0.86 and stays below 2.2% up to
〈P2〉 = 0.9. This covers the range of experimentally accessible
order parameters for rod dispersions.69–75 For this reason, and
for computational simplicity, we ignore contributions of order
nmax = 3 and higher.

Figure 2 demonstrates that the pre-averaging approxi-
mation consistently overestimates the percolation threshold
and is off by up to 6% when compared to the full Ornstein-
Zernike solution with nmax = 3, for the range of field strengths
probed. However, the pre-averaging approximation, whilst not
so accurate for aligning fields, is remarkably accurate for dis-
aligning fields. This is, in fact, not entirely surprising given
that it is exact for fully isotropic configurations and that in
the disaligned state most of the rods are isotropically oriented
perpendicular to the field direction.

The exact prediction for isotropic configurations (K = 0)
is cp = 1/2 if we ignore the end-cap contributions to the con-
tact volume. For perfectly disaligned rods (K → ∞), we find
cp = π2/16, again up to leading order in the aspect ratio. In the
limit K → �∞, however, we can no longer ignore the contri-
butions of the end caps giving rise to a percolation threshold
cp = (8λ/L+4λ2/3L2)−1 ∼ L/8λ to leading order in the aspect
ratio. This implies that the packing fraction φp = cpλ/L ∼ 1/8
at percolation for infinite aligning fields becomes an invariant
of the aspect ratio of the particles. Of course, the second virial
approximation breaks down in this limit. In spite of this, we do
expect that the packing fraction at percolation should remain
an invariant of the aspect ratio also within more sophisticated
closures.

As already mentioned, the second virial approximation
loses accuracy35 for aspect ratios below ∼400. This is exem-
plified in Fig. 3, where we directly compare the theoretical
prediction of the percolation threshold in terms of the filler

FIG. 3. Direct comparison between the percolation threshold obtained with
connectedness percolation theory (solid line) and Monte Carlo simulation
results (full squares with dotted line) for rods of aspect ratio L/λ = 400. The
apparent deviations originate from the use of the second virial approximation
in the theory, as described in the main text. See supplementary material for
raw data.
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fraction φp = ρpπλ
2(2λ + 3L)/12 to our Monte Carlo sim-

ulation results for the aspect ratio L/λ = 400. Even though
the qualitative agreement is very good, the simulation curve
is shifted upwards with respect to the theoretical prediction,
and the disagreement increases with increasing field strengths.
This is not entirely surprising because the contribution of
higher virials becomes more significant the shorter and the
more aligned the rods are.76–79 A calculation on the third virial
level,21,76 which we do not discuss here in detail, raises the
theoretical percolation threshold in isotropic dispersions by
about 1.2%, leading to a better agreement between theory and
simulations.

In passing, we note that while our theory is the most accu-
rate in the slender rod limit, this limit proves difficult to achieve
in simulations, even for ideal particles, as discussed in Sec. IV.
For this reason, we compare our predictions for bidisperse
rods with simulations only for relatively modest aspect ratios
in Sec. VI.

VI. BIDISPERSE RODS

To study the combined effect of length polydispersity and
an external field, in this section, we specifically consider an
example of bidisperse filler particles with fixed lengths L1 and
L2 and number fractions x1 and x2 = 1 � x1, respectively. We
focus on a bidisperse mixture due to its most noticeable effect
on the percolation threshold compared to a continuous distri-
bution with the same mean length, as shown in Refs. 20 and
21. The results for the more general case of an arbitrary length
distribution are discussed in Sec. VII.

Employing Eq. (2) and the second virial approximation,
the average cluster size in a polydisperse system reads

Ti(ϑ) = 2ρλ
∑

n
d2nLiP2n(cos ϑ)

×
〈
LjP2n(cos ϑ′)Tj(ϑ′)

〉
jϑ′

+ 1, (14)

where we have again neglected the end caps and applied
the addition theorem for spherical harmonics, Eq. (10). The
moments of the function T are then defined by the set of linear
equations

〈LiP2l(cos ϑ)Ti(ϑ)〉iϑ

= 2ρλ
∑

n
d2n

〈
L2

i P2l(cos ϑ)P2n(cos ϑ)
〉

iϑ

×
〈
LjP2n(cos ϑ′)Tj(ϑ

′)
〉

jϑ′
+ 〈LiP2l(cos ϑ)〉iϑ . (15)

For the bidisperse case, i, j ∈ {1, 2}, while for more general
compositions i, j ∈ {1, 2, . . .}. We determine the percolation
threshold of polydisperse fillers following a similar procedure
as described in Sec. V.

The trivial case is that where the field coupling parameter
P vanishes, i.e., when the field is independent of the parti-
cle length. In that case, the effect of polydispersity is entirely
scaled out by the definition of the dimensionless concentra-
tion c = πρλ〈L2

i 〉i/4, and we recover the universal curve for
the percolation threshold that coincides with the solution for
the monodisperse rods shown in Fig. 2. For P , 0, however,
this universality is broken by the length-field coupling, imply-
ing that the known scaling of the percolation threshold with
the weight average of the length distribution does not hold

FIG. 4. Critical volume fraction φp versus the external field strength K0 in a
field with cubic length coupling, P = 3, for the number fractions x1 ={0, 0.5, 1}
and x2 = 1 � x1, respectively. The aspect ratios are L1/λ = 200 and L2/λ = 400.
Indicated are also the nematic order parameters 〈P2〉 for the two lengths of
the rod. Curves with different formulations cross each other. In the regime of
strong aligning fields, the bidisperse system exhibits the lowest percolation
threshold, as short rods can act as more isotropic linkers between the strongly
aligned long ones. See supplementary material for raw data.

anymore. This has the important consequence that the perco-
lation threshold of a mixture can be lower than that of the
individual constituents. We illustrate this in Fig. 4 for the case
P = 3, mimicking the impact of an elongational flow field.
Here, and in Figs. 7 and 8 to follow, we set nmax = 2 in Eq.
(10). As already alluded to, we expect this to be accurate to
within a per cent for order parameters in the range �0.5 ≤ 〈P2〉

≤ 0.86.
In Fig. 4, we show the volume fraction φp at percolation as

a function of the bare field strength K0, as defined in Eq. (9),
for mixtures of rods of aspect ratios L1/λ = 200 and L2/λ
= 400. Indicated are also the nematic order parameters 〈P2〉 of
the two types of particle for our choice of P = 3, confirming
that longer particles are more susceptible to the effect of the
orienting field than the short ones. We observe the following:

1. For zero field, the dispersion containing only the short
rods exhibits the highest percolation threshold, whereas
the one containing only long rods percolates at much
lower volume fractions, as expected.

2. This remains true for disaligning fields, no matter how
strong they are, and for aligning fields, provided that they
are not very strong.

3. For sufficiently strong aligning fields, however, we find
the opposite: shorter rods form a percolating cluster at
lower concentrations, on account of them not being as
strongly oriented.

4. The percolation threshold of a 50-50 mixture lies between
that of the pure components unless the alignment field is
sufficiently strong. In that case, the mixture has the lowest
percolation threshold.

Two comments are in order at this point. First, the
monodisperse cases x1 = 0 and x1 = 1 can be described univer-
sally, even for P > 0, by defining the appropriate concentration
scale cp and the field strength

K̃ = K0〈L
P
i 〉/λ

P, (16)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-005804
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which we choose this way in order to compare mixtures with
the same interaction energy per particle. The existence of a
universal curve describing the connection between cp and K̃
does not apply for any other values of x1.

Second, that a mixture of long and short rods may have a
lower percolation threshold than the individual species is due
to a cooperative (synergetic) effect.34 In this case, it is caused
by short rods acting as more isotropic connectors between
the strongly aligned long ones. The long rods contribute to
the network by making long-range connections between sep-
arated clusters of short rods that otherwise would not form a
system-spanning network. The importance of this last point
has perhaps not been fully appreciated.14,28

As we shall see below, for this mechanism to work, the
rods need to have a sufficient difference in order parameter
at a given field strength. Whether or not the mixture has the
lowest percolation threshold depends on the coupling strength
P, the number fraction x1, and the length ratio L2/L1. It turns
out that the cooperative network formation described above
can only occur if long rods are more strongly aligned than the
short ones, i.e., for field-coupling parameters P > 0. In the case
of P < 0, turning on an external alignment field amplifies the
advantage of the longer species in forming a network, which
is already present in isotropic configurations. As a result, for
negative field-coupling parameters P, the mixture containing
only the longest species always exhibits the lowest percolation
threshold.

Before analyzing the conditions for cooperative network
formation in more detail, we first discuss the comparison of our
connectedness percolation theory with the results from Monte
Carlo simulations.

In Fig. 5, we show our Monte Carlo simulation results
for the percolation threshold of the same binary mixture of
rods and the same field coupling parameter P = 3. As already
discussed in Sec. V, the absolute values for the percolation
threshold in theory and simulations are shifted with respect to
each other. Despite this, we again find the cooperative effect in
our Monte Carlo simulations, in very good qualitative agree-
ment with the theory. In fact, the field strengths below which
the 50-50 mixture has a lower percolation threshold than the
pure rods even agree well quantitatively; they differ by less
than 3%.

FIG. 5. Percolation threshold in terms of the filler fraction obtained by Monte
Carlo simulations for a field with cubic length coupling, P = 3. The aspect
ratios are L1/λ= 200 and L2/λ= 400, with the number fractions x1 ={0, 0.5, 1}
and x2 = 1 � x1, respectively. See supplementary material for raw data.

FIG. 6. Average nematic order parameter of rods in a bidisperse mixture of
aspect ratios L1/λ = 200 and L2/λ = 400 with number fractions x1 = x2 = 0.5
and length coupling P = 3. Open symbols show the bulk average alignment
〈P2〉 for each species as a function of field K0, while the filled symbols show
the average for rods in percolating clusters only, measured in Monte Carlo
simulations at the percolation threshold. See supplementary material for raw
data.

The simulations also allow us to probe the structure of
the clusters. Figure 6 shows the nematic order parameter 〈P2〉

for the same binary mixture as in Fig. 5. The black and green
lines (open symbols) show how the overall alignment of the
rods varies with field strength. These curves are independent
of packing fraction due to the ideality of the rods. The red and
blue lines (closed symbols) show the mean alignment of rods
within the percolating clusters only.

The figure demonstrates that rods within these clusters
are, on average, more isotropically oriented than those in the
bulk. For the longer species, the difference is slight, but for
the shorter species, it is quite pronounced. In Fig. 6, the perco-
lating clusters have been analyzed at the percolation threshold
itself. At higher packing fractions (deeper into the percolating
regime), the percolating clusters incorporate more and more
of the rods in the system and the mean alignment of rods in the
clusters therefore approaches that of the bulk. The difference of
alignment between bulk and clusters at the percolation thresh-
old reinforces our interpretation of how percolation occurs in
these mixtures: the shorter rods act as more isotropic linkers
between clusters of the more strongly aligned longer species.
This principle applies also for disaligning fields (K0 > 0),
where the short rods link “layers” of connected longer rods
lying perpendicular to the field.

VII. HOW IS UNIVERSALITY BROKEN?

We have seen that the percolation threshold of sufficiently
slender ideal rods in the absence of an external field depends
only on the first and the second moment of the length dis-
tribution of length-polydisperse rods. In fact, this also turns
out to be true for hard rods.21,23 The results of Sec. VI sug-
gest, however, that the percolation threshold of ideal rods in
an external quadrupole field must be a function of more than
two moments. As we show next, a multitude of higher order
moments becomes important for weak fields, depending on the
field strength and field coupling parameter. Before doing that,
it is interesting to note that the percolation threshold of per-
fectly aligned and disaligned rods, in our model corresponding
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to infinite negative and positive field strengths, again depends
on the first two moments alone.

To show this for perfect alignment, we only retain the lead-
ing order term independent of the angle between the particles
in Eq. (3). Inserting this into (2) and (1) gives a percolation
threshold

cp(K̃ → −∞) =
1

4λ
〈L2〉√
〈L2〉 + 〈L〉

. (17)

This percolation threshold is not only much higher than that
of isotropic ideal rods, which obeys cp = 1/2, but remains
a non-trivial combination of the two moments of the length
distribution. As a result, the percolation threshold of a mixture
of rods is always lower than that of the single component in
the limit of perfect alignment. For infinite disaligning fields
with K̃ → ∞, the leading order term in Eq. (3) is the one
that depends on the angle between the particles. A similar
calculation then produces cp = π2/16, as in the monodisperse
case.

For nonzero but finite field strengths, the calcula-
tions are highly nontrivial, even if the field is weak. We
can Taylor expand the orientational distribution function
in powers of the field strength and calculate the averages〈
L2

i P2l(cos ϑ)P2n(cos ϑ)
〉

iϑ
that enter the matrix equation (15)

up to arbitrary order. Inserting this into our equations, we need
to expand, again, in powers of the field strength and collect
terms of equal power. We have done this for bi-, tri-, and
tetradisperse rod mixtures and obtain an identical expression
that, up to third order in the field strength, reads

cp =
1
2

+
2

405

〈
L2+P

〉2

〈
L2〉2
〈LP〉2

K̃2

−

8
[
9
〈
L2

〉〈
L2+P

〉〈
L2+2P

〉
−
〈
L2+P

〉3
]

76545
〈
L2〉3
〈LP〉3

K̃3 + O(K̃4). (18)

As the moments of the length distribution arise only from
the coefficients

〈
L2

i P2l(cos ϑ)P2n(cos ϑ)
〉

iϑ
, we conclude that

Eq. (18) must also hold for an arbitrary number of components.
The expression (18) shows that the percolation threshold

depends on several higher moments of the length distribution
whose order is determined by the field coupling parameter P
and the expansion order. This confirms that the known uni-
versal scaling of the percolation threshold with the first two
moments of the length distribution fails if the field couples
to the polydisperse dimensions of the rods, in agreement with
Fig. 7. Only in the limit P = 0 or for monodisperse systems, the
higher moments cancel and we recover a universal dependence
of the percolation threshold cp on the scaled field strength K̃ ,
as defined in Eq. (16).

Note that Eq. (18) describes the percolation threshold for
small fields very well. The crossing of the curves observed
in Fig. 7, however, cannot be reliably captured by the expan-
sion, even up to order O(K̃8) (results not shown). The reason
is that the crossing takes place at effective field strengths that
greatly exceed the validity range of the approximation. For
monodisperse rods, the expansion result in Eq. (18) is con-
sistent with the full solution for scaled field strengths up to
|K̃ | . 4. However, we observe that the agreement tends to

FIG. 7. Dependence of the dimensionless percolation threshold cp on the
scaled external field strength K̃ for a tridisperse mixture of rods with the
relative aspect ratios L1 = 0.5 L3 and L2 = 0.8 L3, for a length-field coupling
parameter P = 3. The number fractions x1 and x2 are specified in the legend,
and x3 = 1 � x1 � x2. See supplementary material for raw data.

worsen for polydisperse mixtures, where the validity range
can decrease to roughly |K̃ | . 1.5.

To investigate the crossing, we therefore need to resort
to a brute-force evaluation of the full theory, vary all system
parameters, and hope to observe patterns. For this purpose, for
any given ratios of the rod lengths and the coupling parameter
P, we evaluate cp as a function of K0 for a binary and ternary
mixture, where the number fractions run from nought to unity.
Not surprisingly, exactly because of the lack of universality, we
have not been able to spot any clear trends. For weak fields, the
percolation threshold φp = cp〈L〉λ/〈L2〉 increases with increas-
ing fractions of short rods, as can be deduced from Eq. (18).
In some cases, for sufficiently negative values of K0 and for
small enough difference in rod length, we find that this trend
completely reverses (see Figs. 8 and 9). This inversion only
takes place if P is large enough, implying a large difference in
the order parameters of different species. Under those condi-
tions, mixtures with the largest fraction of short rods exhibit
the lowest percolation threshold. Interestingly, for even more

FIG. 8. Critical volume fraction φp of a bidisperse mixture subject to a field
with cubic length coupling, P = 3, as obtained using connectedness percolation
theory. The aspect ratios of the rods are L1/λ = 80 and L2/λ = 100, with
the number fractions x1 ∈ [0, 1] and x2 = 1 � x1, respectively. Indicated
are also the nematic order parameters 〈P2〉 for the two types of rod. For
strong orienting fields, the order of the curves reverses completely so that
the dispersion containing only the short rods exhibits the lowest percolation
threshold. See supplementary material for raw data.
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FIG. 9. Monte Carlo simulation results for a bidisperse mixture in a field with
cubic length coupling, P = 3. Plotted is the critical volume fractionφp for three
of the compositions shown in Fig. 8, where the aspect ratios of the rods are
L1/λ = 80 and L2/λ = 100. The field strengths K0 at which the curves cross in
the simulation result show excellent quantitative agreement with the crossing
points in Fig. 8 obtained by means of connectedness percolation theory. See
supplementary material for raw data.

negative field strengths, we find in some cases that the orig-
inal trend for very weak fields is recovered. Obviously, we
should recover the predictions of Eq. (17) in the limit of perfect
alignment.

Figures 8 and 9 show an example of the inversion, which
we observe both theoretically and in our Monte Carlo simula-
tions. As already alluded to, the absolute values of the critical
volume fractions obtained from the simulations are shifted
with respect to the theoretical results. Despite that, the field
strengths at which the curves cross show excellent quantitative
agreement, with a relative error of less than 1%.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the impact of an exter-
nal alignment field in combination with polydispersity on the
percolation threshold. For this purpose, we used connectedness
percolation theory and Monte Carlo simulations. Although
we are not the first to theoretically investigate this,14,28 we
have attempted to provide a considerably more comprehensive
treatment.

Rahatekar and collaborators28 performed dissipative par-
ticle dynamics simulations on weakly repulsive dipolar rods
subject to an electrical field, neglecting dipole-dipole inter-
actions. (We also ignore any field-induced interactions.) For
rods of relatively modest aspect ratios, they also found that a
bidisperse mixture in an aligning field can exhibit a lower per-
colation threshold than either of the individual components.
Of course, a dipole field is not quite the same as a quadrupole
field, so for comparison we also investigated the impact of
a dipole field of the form U ∝ K0(L/λ)P |cos γ|. In order to
mimic their simulations, where alignment is achieved by fix-
ing permanent electric charges at the ends of the rods, we
would need to set P = 1. In our theory, however, we only find
the same behavior when choosing P & 2. We suspect that this
might be due to the second virial approximation not being
sufficiently accurate for the aspect ratios of 5 and 20 used in
Ref. 28.

In another recent theoretical approach, Chatterjee inves-
tigated the effect of alignment and length polydispersity on

the percolation threshold by mapping continuum percolation
onto percolation on a Bethe lattice.14 For mixtures of short
and long rods, he found that bidispersity can lower the perco-
lation threshold with respect to the monodisperse case if the
long rods are sufficiently aligned. In that work, however, the
orientations of short and long rods are decoupled, the former
being isotropically oriented irrespective of the degree of order
of the long ones. This implies that the coupling to the field
does not obey Boltzmann statistics, which makes comparison
to experiments difficult. Still, our results show almost quanti-
tative agreement for a mixture of rods with aspect ratios L1/λ
= 10 and L2/λ = 50 if we choose the difference in the order
parameters between short and long species to be large enough,
i.e., if we set P & 2.

In contrast to the earlier studies, we believe that our theory
gives a more complete view on how length polydispersity and
alignment impact upon the percolation threshold and demon-
strates how deeply universality is broken by the external field.
In fact, our expansion around zero field already shows that the
percolation threshold depends on several higher moments of
the length distribution. For isotropic configurations, the per-
colation threshold can be made universal by an appropriate
rescaling of the number density. This involves a volume scal-
ing that is a function of the second moment of the distribution
only. In non-zero field, such a rescaling is impossible, as Eq.
(18) shows.

One of the consequences of this kind of universality break-
ing is that, depending on the length ratios of the rods, the
strength of the coupling to the external alignment field and
the field strength itself, we find a wide variety of behaviors.
This includes monodisperse shorter rods exhibiting a lower
percolation threshold than longer ones, mixtures of short and
long ones with a lower percolation threshold than any of
the pure constituents, and a non-monotonic dependence of
the composition with the lowest percolation threshold on the
field strength. Interestingly, the full theory has to be evalu-
ated in order to be able to observe all these effects, which
happen at sufficiently large field strengths. The aforemen-
tioned expansion in powers of the field strength does not
reproduce this even if we go up to eighth order. (Results not
shown.)

These findings are supported by the results of our Monte
Carlo simulations, where we eliminated finite size effects by
exploiting the fact that the universal scaling of the wrapping
probability function holds even in anisotropic systems. The
simulations are restricted to modest aspect ratios first because
of the quadratically increasing cost of the cluster analysis for
systems of longer rods and second because of the need to sim-
ulate two different system sizes at each combination of field
strength and system composition. Our theory, on the other
hand, becomes more accurate the larger the aspect ratio of
the rods. Hence, the absolute values of the theoretical perco-
lation threshold and the simulations are shifted with respect
to each other. It is therefore remarkable that we find excellent
quantitative agreement for the field strengths at which curves
for the different formulations cross.

This brings us to the last two points that we wish to
address. The first one relates to the pre-averaging approxima-
tion that we discussed in Sec. II. Within this approximation,
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we find the following expansion in powers of the scaled field
strength, as defined in Eq. (16):

cp,PA =
〈L2〉

2〈L〉2
+

1
180
〈L2〉〈L1+P〉2

〈L〉4〈LP〉2
K̃2 + O(K̃3). (19)

For monodisperse systems, this expression gives the correct
zero-field percolation threshold, but the first order correction
already disagrees with our exact result (18). For polydisperse
rods, however, it is inaccurate even to zeroth order in K̃ , as it
fails to introduce the correct moments of the length distribu-
tion. It seems that while the pre-averaging approximation is
appealing because of its intuitive nature, it is fundamentally
wrong for polydisperse rod dispersions.

Our second point pertains to our neglect of any type of
interaction between the particles. It is known that for hard
and for weakly attractive rods in the absence of an external
field, the volume fraction at percolation for length polydisperse
particles obeys the same universal scaling with the inverse
weight average of the particle aspect ratio.9,21,80 In the presence
of an aligning field, hard core interactions increase the degree
of alignment.10 Because of this, it seems reasonable to suggest
that the universality breaking we find in this work survives
if we include hard core interactions. How a combination of
alignment, hard core interactions, and polydispersity affects
the percolation threshold is unknown, and we intend to pursue
it in our ongoing work.
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See supplementary material for all data from calcula-
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