Siegfried Reipert
Agitation Modules: Flexible Means to Accelerate Automated Freeze Substitution
Reipert, Siegfried; Goldammer, Helmuth; Richardson, Christine; Goldberg, Martin W.; Hawkins, Timothy J.; Hollergschwandtner, Elena; Kaufmann, Walter A.; Antreich, Sebastian; Stierhof, York-Dieter
Authors
Helmuth Goldammer
Christine Richardson
Professor Martin Goldberg m.w.goldberg@durham.ac.uk
Professor
Dr Tim Hawkins t.j.hawkins@durham.ac.uk
Head of Bioimaging
Elena Hollergschwandtner
Walter A. Kaufmann
Sebastian Antreich
York-Dieter Stierhof
Abstract
For ultrafast fixation of biological samples to avoid artifacts, high-pressure freezing (HPF) followed by freeze substitution (FS) is preferred over chemical fixation at room temperature. After HPF, samples are maintained at low temperature during dehydration and fixation, while avoiding damaging recrystallization. This is a notoriously slow process. McDonald and Webb demonstrated, in 2011, that sample agitation during FS dramatically reduces the necessary time. Then, in 2015, we (H.G. and S.R.) introduced an agitation module into the cryochamber of an automated FS unit and demonstrated that the preparation of algae could be shortened from days to a couple of hours. We argued that variability in the processing, reproducibility, and safety issues are better addressed using automated FS units. For dissemination, we started low-cost manufacturing of agitation modules for two of the most widely used FS units, the Automatic Freeze Substitution Systems, AFS(1) and AFS2, from Leica Microsystems, using three dimensional (3D)-printing of the major components. To test them, several labs independently used the modules on a wide variety of specimens that had previously been processed by manual agitation, or without agitation. We demonstrate that automated processing with sample agitation saves time, increases flexibility with respect to sample requirements and protocols, and produces data of at least as good quality as other approaches.
Citation
Reipert, S., Goldammer, H., Richardson, C., Goldberg, M. W., Hawkins, T. J., Hollergschwandtner, E., …Stierhof, Y. (2018). Agitation Modules: Flexible Means to Accelerate Automated Freeze Substitution. Journal of Histochemistry & Cytochemistry, 66(12), 903-921. https://doi.org/10.1369/0022155418786698
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 11, 2018 |
Online Publication Date | Jul 3, 2018 |
Publication Date | 2018-12 |
Deposit Date | Jul 5, 2018 |
Journal | Journal of Histochemistry & Cytochemistry |
Print ISSN | 0022-1554 |
Electronic ISSN | 1551-5044 |
Publisher | SAGE Publications |
Peer Reviewed | Peer Reviewed |
Volume | 66 |
Issue | 12 |
Pages | 903-921 |
DOI | https://doi.org/10.1369/0022155418786698 |
Public URL | https://durham-repository.worktribe.com/output/1327269 |
You might also like
STING nuclear partners contribute to innate immune signaling responses
(2021)
Journal Article
BBLN-1 is essential for intermediate filament organization and apical membrane morphology
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search