Dr Christopher Prior christopher.prior@durham.ac.uk
Associate Professor
Dr Christopher Prior christopher.prior@durham.ac.uk
Associate Professor
Professor Anthony Yeates anthony.yeates@durham.ac.uk
Professor
We introduce a technique for evaluating the changing connectivity of a vector field whose integral curves (field lines) form tangled tubular bundles. Applications of such fields include magnetic flux ropes, relativistic plasma jets, stirred two-dimensional fluids, superfluid vortices, and polymer networks. The technique is based on maps of the field line winding—the average entanglement of a given field line with all other field lines. Previously this had been developed for divergence-free vector fields. By extending some previous theoretical results, we show how it can be applied to any vector field that forms a tubular bundle. We demonstrate the efficacy of this technique on data from laboratory plasma experiments with two interacting magnetic flux ropes. Performed in the UCLA Large Plasma Device, the plasma's magnetic field structure is too complex to identify a single dominant current sheet as an expected site of magnetic reconnection. Previously, this complex structure had restricted the ability to analyze the evolving magnetic connectivity, but this is no such restriction to our method. We demonstrate that the plasma establishes a periodically oscillating cycle of magnetic field structure variation which, while triggered by an ideal instability, is dominated by magnetic reconnection. This reconnection leads to periodically varying coherence of a merged central flux rope, a conclusion supported by analysis of the writhing structure of the magnetic field.
Prior, C., & Yeates, A. (2018). Quantifying reconnective activity in braided vector fields. Physical Review E, 98(1), Article 013204. https://doi.org/10.1103/physreve.98.013204
Journal Article Type | Article |
---|---|
Online Publication Date | Jul 24, 2018 |
Publication Date | Jul 24, 2018 |
Deposit Date | Jul 25, 2018 |
Publicly Available Date | Jul 25, 2018 |
Journal | Physical review . E, Statistical, nonlinear, and soft matter physics |
Print ISSN | 2470-0045 |
Electronic ISSN | 2470-0053 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 98 |
Issue | 1 |
Article Number | 013204 |
DOI | https://doi.org/10.1103/physreve.98.013204 |
Public URL | https://durham-repository.worktribe.com/output/1325362 |
Published Journal Article
(3.3 Mb)
PDF
Accepted Journal Article
(4 Mb)
PDF
Copyright Statement
Reprinted with permission from the American Physical Society: Prior, C. & Yeates, A. (2018). Quantifying reconnective activity in braided vector fields. Physical Review E 98(1): 013204. © (2018) by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
Spherical winding and helicity
(2023)
Journal Article
Automated driving for global non-potential simulations of the solar corona
(2022)
Journal Article
Exploring the Origin of Stealth Coronal Mass Ejections with Magnetofrictional Simulations
(2022)
Journal Article
Intrinsic winding of braided vector fields in tubular subdomains
(2021)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search