
Quantifying reconnective activity in braided vector fields

Christopher Prior and Anthony R. Yeates∗

Department of Mathematical Sciences, Durham University,
Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom

(Dated: July 17, 2018)

We introduce a novel technique for evaluating the changing connectivity of a vector field whose in-
tegral curves (field lines) form tangled tubular bundles. Applications of such fields include magnetic
flux ropes, relativistic plasma jets, stirred two-dimensional fluids, super-fluid vortices, and polymer
networks. The technique is based on maps of the field line winding – the average entanglement of
a given field line with all other field lines. Previously this had been developed for divergence-free
vector fields. By extending some previous theoretical results, we show how it can be applied to any
vector field that forms a tubular bundle. We demonstrate the efficacy of this technique on data from
laboratory plasma experiments with two interacting magnetic flux ropes. Performed in the UCLA
Large Plasma Device, the plasma’s magnetic field structure is too complex to identify a single dom-
inant current sheet as an expected site of magnetic reconnection. Previously, this complex structure
had restricted the ability to analyze the evolving magnetic connectivity, but this is no such restric-
tion to our method. We demonstrate that the plasma establishes a periodically oscillating cycle
of magnetic field structure variation which, whilst triggered by an ideal instability, is dominated
by magnetic reconnection. This reconnection leads to periodically varying coherence of a merged
central flux rope, a conclusion supported by analysis of the writhing structure of the magnetic field.

FIG. 1: A braided vector field whose entangled field
lines are contained within a tubular domain.

I. INTRODUCTION

Many physical systems can be represented as braided
vector fields, where the term braiding here refers to
entanglement of the field’s integral curves (field lines).
These vector fields are contained within a tubular volume
as in Figure 1. Braided fields arise in plasma physics as
magnetic flux ropes, in two-dimensional fluids as entan-
gled particle trajectories (e.g. [1]), knotted, canopy or
superfluid vorticies [2–7], and in physical networks such
as elastic filaments [8–10].

In the plasma context, understanding the changing
connectivity (reconnection) of the magnetic field is funda-
mental to understanding many astrophysical phenomena.
An important example is the coronal heating problem in
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the Sun’s atmosphere (corona), where energy released
by reconnection is believed to account for exceptionally
high temperatures [11–16]. Further afield, magnetic re-
connection is the supposed source of gamma ray bursts
in relativistic jets, a critical observational tool for prob-
ing their internal magnetic structure (e.g. [17]). There is
also significant interest in probing the fundamental na-
ture of magnetic reconnection in laboratory plasmas (e.g.
[18–20]).

It is, therefore, often critical to quantify the changing
connectivity of a braided vector field. With a finite num-
ber of curves (e.g. fluid stirrer trajectories) this can be
done using mathematical braid invariants [1, 21]. How-
ever, for space filling vector fields there is no real meaning
to the notion of individual field line reconnection – only
a reconnection density – and we cannot directly apply
methods associated with discrete braided curves.

Topological quantities such as the magnetic helicity
and kinetic helicity are invariant if the fluid in ques-
tion satisfies the Euler equations [22], under which the
field lines are deformed by isotopy and cannot reconnect.
Thus significant changes in these quantities indicate re-
connective activity. Unfortunately they are scalar quan-
tities integrated over the whole vector field; they measure
the average entanglement of the field. Even if the aver-
age value is conserved, a field can experience significant
reconnection. This is the case for the evolution of coronal
magnetic flux ropes, where studies show that magnetic
fields can spontaneously re-organize themselves through
reconnection so as to minimize their energy [15, 23–31].

Progress in this area has been aided by the develop-
ment of a quantity we call here the field line winding,
the average entanglement of a single field line with the
rest of the field [32–34]. Its distribution amongst all field
lines of a braided field is a complete topological invariant,
meaning changes in connectivity occur if and only if this
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distribution changes. In a study of relaxation through
magnetic reconnection, Russell et al. [30] demonstrated
that the evolution of field line winding follows an advec-
tive law to leading order, giving novel insight as to how
highly entangled magnetic fields in plasmas can sponta-
neously self-organize to minimize their energy. However,
field line winding has previously only been defined for
divergence-free fields [32–34]. We show here that it can
be used to evaluate reconnective activity in any differen-
tiable braided vector field. Thus, similar analysis could
be applied to a much wider variety of physical systems.

In the magnetic field context, the field line winding
is not the only approach which has been used to mea-
sure changing connectivity. Hesse and co-authors [35, 36]
showed that reconnecting flux (field line reconnection
weighted by magnetic flux) can be measured by the inte-
grated parallel electric field through localized sites. This
is the so called GMR (General Magnetic Reconnection)
theory. Contemporary use of GMR often involves identi-
fying sheets of significant current (Quasi separatrix lay-
ers/QSL’s) at which reconnection will occur in magne-
tized plasmas (e.g. [20, 37–39]). More direct approaches
for have been applied by Wilmot-Smith and De Moor-
tel [40] and Mackay and van Ballegooijen [41], who track
the changing connectivity between particular field line
“types” (specific to each numerical experiment). We
highlight the fact that in both approaches the field has
to be separated into distinct subsections (either current
sheets, or discrete “types”) before connectivity can be
defined and tracked. The approach we develop here does
not require either assumption to analyze reconnection.

We demonstrate the utility of the field line winding by
applying it to a pair of evolving magnetic flux ropes in-
duced in a laboratory plasma in the UCLA Large Plasma
Device (LaPD). The group have conducted a number of
such experiments [18, 19, 42, 43]. DeHaas and Gekel-
man [39] were able to analyze helicity flows in and out
of a dominant QSL established between the interacting
ropes. In another study Gekelman [20] used the GMR
theory to measure reconnective activity.

Here we focus on the “two-moon” experiment in which
the flux ropes are placed significantly closer together
(Figure 2 of [44]). The flux ropes coalesce to form a mag-
netic field with complex small-scale current structure, i.e.
there is no clear single QSL at which reconnection occurs.
We will demonstrate that the field line winding measure
can be used to analyze the changing connectivity even in
the absence of a clearly dominant reconnection site.

II. MEASURING THE CHANGING
CONNECTIVITY OF VECTOR FIELDS

In this section we set out our general approach for
measuring changes in field line connectivity in braided
vector fields. Braided fields are defined here as vector
fields B, on a domain foliated by a family of flat planes{
Dz
∣∣z ∈ [0, h]

}
. Braided fields B are tangent on the side

(a) (b)

FIG. 2: Geometrical interpretation of L(x0, t), showing
the definition of the angle Θ between the curves γ and
γ̃ in each plane, relative to the x1 direction (white

arrows).

boundaries
{
∂Dz

∣∣z ∈ [0, h]
}

but have some non-zero pos-
itive distribution B · ẑ > 0 on every plane Dz, includ-
ing the end boundaries. This ensures that the field lines
γ(x0, s), obtained by solving the ODE

dγ

ds
=

B(γ(x0, s))

|B(γ(x0, s))|
, (1)

with initial condition γ(x0, 0) = x0 ∈ D0, must flow
through the domain (i.e. pierce each plane Dz only
once). We can define a coordinate system for this do-
main (x1, x2, z) where (x1, x2) span the planes Dz and z
labels the particular plane Dz. We can also parametrize
any field line by its start point x0 ∈ D0 and z coordinate.

A. The field line winding L

To measure a braided field’s changing connectivity,
we define the field line winding L(x0, t), for a field line
γ(x0, z) with respect to all other field lines γ̃(y0, z) –
rooted at all other end-points y0 ∈ D0 – as the quantity

L(x0, t) =

∫
γ

dL(x0, t)

dz
dz, (2)

where

dL(x0, t)

dz
=

1

2π

∫
D0

dΘ(γ̃, γ, z)

dz
d2y0, (3)

Θ(γ̃, γ, z) = arctan

(
γ̃2(y0, z)− γ2(x0, z)

γ̃1(y0, z)− γ1(x0, z)

)
. (4)

The angle Θ is measured in the plane Dz, between the
x1-axis and a line joining γ(z) to γ̃(z) (Figure 2a). Thus
dΘ(γ̃, γ, z)/dz measures the local rate at which the field
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(a)

(b)

FIG. 3: A braided field used in [15]. (a) The field is a
superposition of counter-rotating twisted field (black)

and a straight background field (blue). (b) The
distribution L(x0, t) for this field.

line passing through (γ̃1(y0, z), γ̃2(y0, z), z) is winding
round the field line γ. The integral in (3) is over D0,
meaning that each point (γ̃1, γ̃2, z) is a function of its
initial point y0 ∈ D0, thus to perform this calculation we
must follow all field lines in the domain. If we imagine a
limiting scenario with only two field lines γ and Γ, then
L(x0, t) reduces to

L(x0, t) =
Θ(Γ, γ, h)−Θ(Γ, γ, 0)

2π
+ n(Γ, γ), (5)

where n(Γ, γ) is the signed integer number of times the
curve Γ winds around γ (with right handed rotations pos-
itive and left handed negative). So L(x0, t) represents the
number of times Γ winds around γ (in Figure 2b we have
n(Γ, γ) = −2). For a space-filling vector field B, L(x0, t)
represents the average winding of all other field lines of
B with the field line γ. By computing L(x0, t) on the
whole of D0 we define the mutual winding connectivity
of all field lines of B.

The simplest possible distribution L(x0, t) is a
uniformly-twisted field, which would have L(x0, t) =
constant. A more interesting example is the braid-based

vector field studied in [15, 30], whose structure consists
of a series of counter twists (Figure 3a). It has a mean
L(x0, t) value of 0, but a significantly complex distribu-
tion of L(x0, t) including winding of both signs, as shown
in Figure 3(b). The experimental magnetic field data in
Section III will have aspects of both distributions.

B. Measuring reconnection

In Appendix A we demonstrate the following theorem.

Theorem II.1 Consider the braided vector fields B(x, t)
at times t−∆t and t. The field lines of B(x, t−∆t) and
B(x, t) can be linked by an isotopy which vanishes on the
bounding planes D0 and Dh if and only if L(x0, t−∆t) ≡
L(x0, t), ∀x0 ∈ D0.

The main point is that a change in L(x0, t), for any x0,
necessarily implies a change in the field line connectivity
of B(x, t).

The requirement that the isotopy vanish on D0 and Dh
means that B(x, t−∆t) must be reachable from B(x, t)
without moving the end-points of the field lines on these
boundaries. In many applications, there is an underlying
motion of the medium that would violate this require-
ment, yet would not change the connectivity of B(x, t)
because the field lines would be material lines under this
motion. This is true for magnetic field lines in a plasma,
or vortex lines in a fluid. It is desirable to remove this
underlying ideal motion of the end-points, so as to mea-
sure only changes in connectivity occurring with respect
to this ideal motion.

To do this, denote the underlying ideal flows on D0

and Dh by V0(x0, t) and Vh(x, t). To ensure that we
are following the same bundle of field lines in time, we
change the shape of D0(t) and Dh(t) by evolving their
boundaries under the flows of V0 and Vh. Accordingly,
the time derivative of L(x0, t) can be written as

dL(x0, t)

dt
=

d

dt

∫ h

0

1

2π

∫
D0(t)

dΘ(γ̃, γ, z)

dz
d2y0 dz

=

∫ h

0

1

2π

∫
D0(t)

∂

∂t

(
dΘ(γ̃, γ, z)

dz

)
d2y0 dz +∫ h

0

1

2π

∮
∂D0(t)

dΘ(γ̃, γ, z)

dz
V0(y0, t) · n̂ dy0 dz. (6)

The last term accounts for changing shape of ∂D0(t),
whereas the previous term accounts both for changes in
winding due to reconnection but also changes due to ideal
motions of the field line start/end points around one an-
other. This term may be rewritten explicitly in terms of
the net winding angles on the upper and lower boundaries
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as ∫ h

0

1

2π

∫
D0(t)

∂

∂t

(
dΘ(γ̃, γ, z)

dz

)
d2y0 dz =

1

2π

∫
D0(t)

[
∂Θ(γ̃, γ, h)

∂t
− ∂Θ(γ̃, γ, 0)

∂t

]
d2y0 +∫

D0(t)

∂n(γ̃, γ)

∂t
d2y0, (7)

where n(γ̃, γ) is the integer number of full windings be-
tween the field line curves γ̃ and γ. If the evolution is
isotopic, the corresponding integral vanishes as n cannot
change [45].

To remove the contribution from ideal motions, con-
sider the distribution of L(x0, t) that would be obtained
purely due to the ideal motion from a given distribution
at time t−∆t. To do this, we track the same field line γ
by taking its start point x0(τ) for τ ∈ [t−∆t, t] to be the
preimage of x0 under the flow of V0. Then the L(x0, t)
distribution expected purely from the ideal motion would
be

Lid(x0, t) = L(x0(t−∆t), t−∆t) +

1

2π

∫ t

t−∆t

{∫
D0(τ)

[
∂Θ(γ̃, γ, h)

∂τ

∣∣∣∣
id

− ∂Θ(γ̃, γ, 0)

∂τ

∣∣∣∣
id

]
d2y0

+

∮
∂D0(τ)

dΘ(γ̃, γ, z)

dz
V0(y0, t) · n̂dy0

}
dτ, (8)

where

∂Θ(γ̃, γ, 0)

∂τ

∣∣∣∣
id

=

[
y0 − x0(τ)

]
×V0(x0(τ), τ)∣∣y0 − x0(τ)

∣∣2 , (9)

∂Θ(γ̃, γ, h)

∂τ

∣∣∣∣
id

=[
γ̃(y0, h)− γ(x0(τ), h)

]
×Vh(γ(x0(τ), h), τ)∣∣γ̃(y0, h)− γ(x0(τ), h)

∣∣2 . (10)

We can subtract this contribution from the observed
L(x0, t) to measure the contribution from reconnective
activity with respect to the underlying ideal motion,
which we define as

R(x0, t) =
L(x0, t)− Lid(x0, t)

∆t
. (11)

Non-zero R(x0, t) necessarily indicates a change of field
line connectivity within the domain.

As a practical remark Theorem II.1, when applied to a
finite domain, assumes that B · n̂ = 0 on the side bound-
ary ∂Dz. If field lines are allowed to enter or leave this
side boundary, then this can change the apparent L(x0, t)
measured within the domain. This is an additional com-
plication that needs to be considered in applications; in
the example presented in Section III, we find this not to
be a significant effect, provided ∆t is small enough. How-
ever, it does place additional constraints on the domain
D0, which must be chosen so that all field lines starting
in this domain end within Dh.

III. APPLICATION TO RECONNECTING
MAGNETIC FLUX TUBES

As an example application of the reconnection measure
R(x0, t), we apply it to study the interaction of magnetic
flux ropes in a laboratory plasma experiment. The ex-
periment was performed in the Large Plasma Device at
UCLA [46], an 18 m long tube filled with plasma (he-
lium in this case; shown in Figure 4a). The bulk of the
plasma carries no net current. The flux ropes are cre-
ated by a masked cathode source in the shape of two
half discs (hence “two-moon”), separated by only 1 cm
(by comparison the cross-section of the data we receive
is 24 cm × 24 cm). The value of the currents was set
sufficiently high that the flux ropes would become kink-
unstable once established [44, 47]. More specific details
of the experimental setup for collecting the data are given
in [44]. Here we outline only the aspects critical or spe-
cific to our analysis.

A. Experimental data format

Three-axis magnetic and Mach (flow) probes were used
to obtain time series of ∂B/∂t (with estimated uncer-
tainty ±2%) and M = V/cs (with estimated uncertainty
±5%), where V is the plasma velocity and cs is the
ion sound speed. The experiment was repeated and the
probes repositioned so as to build up three-dimensional
arrays of ∂B/∂t and M, as functions of time.

From the ∂B/∂t data the magnetic field B was ex-
tracted using the known initial background field Bb =
B0ẑ, where B0 ≈ 300 G. To extract the plasma velocity
V, it is necessary to know the ion sound speed

cs = 9.79× 105

√
γZTe
µ

cm s−1, (12)

where we assume γZ = 1 and µ = 4.003 for helium.
The electron temperature was measured as Te = 4 eV in
the background plasma, and about 8 eV in the center of
the flux ropes. We approximate Te elsewhere by inter-
polating between these two values, proportional to the
longitudinal current density |Jz|.

The data were measured on a grid with coordinates
(x1, x2, z) where x1 ∈ [−12, 11.76], x2 ∈ [−11.76, 12],
z ∈ [64, 1024] (all in cm), with grid lengths n1 = 100,
n2 = 100, n3 = 16 respectively. The low resolution along
the z axis results from constraints on the measurement
probe locations, but is acceptable because of the strong
background “guide” field compared to the transverse field
generated by the two-moon currents, typically of order
1 G. In this study we have data for a total duration
1.28 ms, with 2000 equally spaced snapshots separated
by ∆t = 0.64µs.

Critically, the data result from a series of repeat exper-
iments which are averaged, owing to the need to repeat
the experiment each time the probes are repositioned.



5

Significant steps are taken to correlate the data spatially
and temporally: see [44] for details. In general, the ex-
periments are found to be repeatable, though there are
some indications of chaos locally in the the system [44].
As such the averaged magnetic field has a small amount
of divergence. The reconnective measure R(x0, t) does
not require a divergence-free field, so we choose not to
apply a correction to remove the divergence.

B. Basic properties of the magnetic field

1. The dominance of the background magnetic field
strength over the current-generated component
means B · ẑ > 0 everywhere in the domain. Thus
the field lines will only travel along the tube in one
direction (a requirement for braided fields).

2. The velocity field V does not vanish on the bound-
ary of the domain (see Figure 4b and c). Thus we
will use (11) to evaulate the reconnective activity
in the field.

3. The magnetic field forms a heavily tangled sub-
structure at the centre of the domain, as the flux
ropes rapidly merge – this structure is indicated in
a “color map” in Figure 4(d). Briefly the field lines
are colored by one of four sectors of D0 in which
they begin. The color is then plotted where the
field line ends on Dh. The color mixing indicates a
complex magnetic field topology; it appears to be
folded rather than uniformly twisted (which would
lead to a perfect spiral shape).

4. The current density (calculated by J = ∇ × B)
has significant sub-structure. This is shown in Fig-
ures 4(e) and (f), which are plots of local field line
twisting due to the current, (∇ × B) · B/|B|2, in-
tegrated along magnetic field lines for each start
point x0 ∈ D0. The majority of the twisting is
positive, corresponding to the current injected to
create the flux ropes, and localized in the center of
the domain. There is significant small-scale vari-
ation which we would not expect for a uniformly
twisted flux rope.

5. The current structure shows significant time vari-
ation. At t = 0.64 ms (Figure 4e) there is a clear
spiral structure with a central core of zero (net) cur-
rent, while at t = 1.28 ms (Figure 4f) the current is
more clustered (though with significant substruc-
ture). In the latter half of the evolution, we found
the current structure to alternate periodically be-
tween these two states.

6. We estimate the Alfvén speed as vA =
B/
√
µ0nimi ≈ 2.5× 105 m s−1, based on a number

density ni = 2× 1018 m−3. To estimate the Alfvén
time we note field line are of the order 10m length,
so the Alfvén time is approximately 4× 10−5s. By

contrast, the time between snapshots is 6.4×10−7s,
so the time discretization suffices to resolve ideal
motions and hence discriminate these from recon-
nective motion.

C. Quantities computed

We calculate a set of quantities for the magnetic field
at a cadence of 20 time steps, ∆t = 0.0128 ms. For each
quantity, say Q, Q(x0, t) will denote its distribution on
x0 ∈ D0 at a time t (all quantities are integrated over field
lines), and Q(t) = 1

|D0|
∫
D0
Q(x0, t) d2x0 its integrated

value over the whole field, normalised by the area |D0|
at that time. This area changes due to ideal motions (as
discussed in Section II B), but it is also slightly modified
at each time so as to include only those field lines that
reach the far z boundary within the measured domain.
For our small ∆t, the change in |D0| is generally less than
1%, so that the effect on L(x0, t), for example, is insignif-
icant. Further, we shall denote the unsigned integral of
each quantity by Qabs(t) = 1

|D0|
∫
D0
|Q(x0, t)|d2x0. The

calculated quantities are:

1. Field line winding (weighted by the domain size). A
value of L(x0, t) in the highly twisted central region
corresponds to an average winding of about 0.147
turns.

2. Reconnective and ideal rates of change. We com-
pute R(x0, t), from (11), using an edge-detection
algorithm to track the changing shape of D0. In
doing so we also record the rate of change in field
line winding due to purely ideal end-point motions,
which we label I(x0, t), i.e.

I(x0, t) =
Lid(x0, t)− L(x0(t−∆t), t−∆t)

∆t
.

3. Twist. The (average) local rotation of the field
about a field line γ, as opposed to the winding of
the whole field given by L. It is

T (x0, t) =

∫
γ(x0)

J ·B
B2

ds, (13)

where s is arclength along γ (see e.g. [45]). Posi-
tive values indicate right-handed rotation. It is this
quantity (averaged over the length of the field line)
which is shown in Figures 4(e) and (f).

4. Writhe. The writhe of a curve is a dimensionless
measure of its contortion and is frequently used in
astrophysical, biophysical and mechanical contexts.
For braided fields it is given [45] by

W(x0, t) =

∫
γ(x0)

ẑ ·T× dT
dz

1 + |ẑ ·T|
dz, (14)



6

(a) (b) (c)

(d) (e) (f)

FIG. 4: The flux rope experiment, showing (a) the experimental setup (reproduced from [48]), (b) streamlines of the
transverse velocity field V in the plane Dh at t = 0.64 ms, (c) a small subset of the field lines of B at t = 1.28 ms, (d)
a color map of the magnetic connectivity from D0 to D1 at t = 0.64 ms, (e) the field-line integrated vertical current

density at t = 0.64 ms, and (f) the same at t = 1.28 ms.

and is positive/negative for right/left handed he-
lices. Because of the significant aspect ratio of
our domain, the numerical values of W are small
(≈ 0.0004), but this does not mean that the geo-
metrical effect is small. This is shown by the ap-
propriately scaled curves in Figure 5.

Since we have a complex entangled field rather than
a set of discrete flux tubes, we do not have the simple
relationship L(x0) = W(x0) + T (x0) that holds for thin
flux ropes [45, 49], but we do expect a certain amount of
ideal twist-writhe conversion due to ideal instabilities of
the interacting flux ropes.

D. Results: integrated quantities and dominating
reconnection

We discuss first the time evolution of the integrated
quantities; their spatial distribution will be discussed in
Section III F.

Figure 6 shows many of the integrated quantities, as
functions of time. In Figure 6(a) we see that L(t) gener-
ally increases, consistent with the continual input of pos-
itive twisting by the current injection as seen in Figures
4(e) and (f). There is initially uniform growth followed
by regular periodic oscillations about a mean growth.
Figure 6(b) shows the net rate of change due to recon-
nective activity, R(t). This is mainly negative, indicat-
ing that reconnection is (on average) acting to oppose
the growth of positive winding due to the current input.
After t = 0.64 ms the oscillations in R(t) have a simi-
lar amplitude to its average value, indicating significant
variation in the nature of the reconnective contribution.
Figure 6(c) shows the total absolute reconnective activity,
Rabs(t), which peaks in the middle of the evolution. This
always has an oscillatory component but the oscillation
is more coherent after t = 0.8 ms. As shown in Figure
6(d), the net writhe W(t) also settles into a relatively
regular cycle after t = 0.8 ms.

Figure 6(e) compares the total unsigned contributions
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(a) (b) (c)

FIG. 5: Writhe values for field lines typical of the
experimental data. (a) Helices with W = 0.0004 (red),

0.0002 (blue), and 0.0001 (green). (b) and (c) show field
lines taken from the actual data (for t = 0.7936 ms),

with the same W values as in (a). Curves are plotted
with the aspect ratios (1, 1, 2.5) used in later figures.

from reconnection, Rabs(t), and from ideal end-point mo-
tions, Iabs(t). We see that changes in average winding
due to reconnection are significantly larger than the ideal
contribution. In Figure 6(f) we see that the difference in
net contribution is smaller, although Rabs(t) still tends
to dominate at later times. Overall, the changing connec-
tivity is dominated by reconnective activity rather than
by ideal loss due to fluid motion at the end boundaries.

E. Results: twist-writhe conversion driving the
evolution

By re-scaling bothW(t) and twist T (t) between 0 and 1
(Figure 7a), we see they oscillate out of phase with min-
ima of one coinciding with maxima of the other. This
is reminiscent of the ideal twist-writhe conversion asso-
ciated with the ideal kink instability of MHD/plasma
physics, though since this is a non-ideal evolution their
sum is not conserved.

This periodic oscillation has the same period (roughly
0.2 ms) as the oscillations seen in R(t) (Figure 7b) and
in L(t) (Figure 7c). Further, it appears that the local
extrema in W(t) and T (t) occur just prior to those in
the other quantities. This series of temporal coincidences
is consistent with the idea that an ideal kink mechanism
[47] is driving the oscillations in the later part of the
evolution. For a thin plasma column with free boundaries
and an axial plasma flow, Ryutov et al. [47] show that
the frequency of the most unstable kink mode is

k =
|V|
2L

√
1−

(
|V|
vA

)2

, (15)

where L = 11 m is the length of the column and vA is
the Alfvén speed. From the mean kinetic energy over the
experiment, we estimate the average velocity to be |V| ≈
1.25 × 105 cm s−1. The Alfvén velocity was estimated
earlier to be vA = 2.5×105 m s−1, leading to k ≈ 4.9 kHz.
This is in good agreement with the observed oscillation,
whose period 0.2 ms corresponds to a frequency of 5 kHz.

The fact that reconnective activity gives the dominant
contribution to the change in field connectivity suggest
that, while the ideal kink instability might trigger the
oscillatory behaviour in the system, the complex topol-
ogy of the merged fields means that this sets off a cycle
of reconnective activity. This cycle must somehow force
the magnetic field to rearrange its topology in the central
region. We next explore this spatial evolution.

F. Results: spatial distribution of topological
quantities

We focus on the phase t > 0.75 ms when periodic
behaviour is prevalent in all global diagnostics. The
qualitative behavior of the distributions L(x0, t),
R(x0, t) and W(x0, t) repeats from one cycle to the
next, so it suffices to illustrate one cycle. Snapshots
of these three distributions at a sequence of times
0.7936 ms, 0.8448 ms, 0.896 ms, 0.9344 ms, 0.97280 ms,
covering one (local) minimum-to-minimum cycle of L(t),
are shown in Figure 8 (for clarity L(x0, t)

2 is plotted).
The subset of high L values (L2 > 0.0625) initially form
a spiral shape (a). This “folds” inwards to form a more
uniform central distribution (d and g), which is then
“unravelled” to reform the spiral shape (j and m). At
all times, a diffuse background of weak negative and
positive reconnective activity is present outside of the
more active central region, likely a result of interaction
between the weakly twisted background and the core
“flux rope”.

In Figure 8, the quantity R(x0, t) is plotted as

±
√
|R(x0, t)| so as to emphasize its features. Strong

positive values (
√
|R| > 90) are most prevalent when the

spiral structure is forming, (b and n) and least prevalent
when the L structure is most coherent (h). Further the
high R densities occur at the centre of the spiral (c.f.
(c)-(b)) where L(x0, t) is lowered. A more detailed anal-
ysis indicates that positive R creates the spiral arm while
negative activity creates the lower-L gap inside the spi-
ral. Thus reconnective activity is shaping the the field’s
topology.

The writhe distributions in the right-hand column of
Figure 8 indicate that the majority of significantly con-
torted curves lie in the central flux rope region. In (c)
and (o) we see the same (but weak) spiral structure ob-
served in the L plots, whilst when the L structure is most
coherent we see a similarly compact structure for the W
distribution (i). Intriguingly, there is always a region in
the middle of this high-W region with almost noW, even
for (i) where the link distribution L is close to uniform.
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FIG. 6: Various global topological quantities charted in time. (a) L(t) is always positive and transitions to periodic
behaviour from uniform growth. (b) R(t) has some oscillatory behaviour, but the mean value is consistently

negative. (c) R(t) peaks in the middle of the field’s evolution. (d) W(t) shows a significant rise between t = 0.5 ms
and t = 0.64 ms, then sets into an oscillatory cycle. (e) Rabs(t) and Iabs(t), the reconnective component is always

significantly larger. (f) R(t) and I(t), generally both oscillate but during the first 400 steps the ideal contribution is
net positive.
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FIG. 7: Scaled plots indicating the temporal relationship between various quantities associated with B. (a) T (t) and
W(t), local minima/maxima are temporally coincident (opposing). (b) W(t) and R(t), the oscillation period of the

two quantities is roughly the same and local extrema in W always occur prior to those of R. (c) L(t) and R(t),
peaks in R(t) generally occur first.

There is some indication that the curves in this high L
and W region are non-uniformly twisted.

To give the reader an idea of what this means for
the actual three-dimensional structure, we have plot-
ted a subset of field lines at t = 0.7936 ms in Figure
9. This is when the L(x0, t) structure has a spiral mor-
phology. The field line startpoints chosen are those of
high W > 0.0002, which lie on the high-L spiral (black),
and those of medium W ∈ (0.0001 − 0.0002) which lie
“inside” the spiral (green). The high-W field lines are
seen to form a thin folded strip (Figure 9b), while the
medium-W curves (Figure 9c) have a more uniformly
twisted structure with less writhe. In Figure 9(d) we

see that there is a reasonable degree of mixing of these
two field line types.

The corresponding field lines for t = 0.896 ms, when
the L(x0, t) structure has a coherent strong central is-
land, are shown in Figures 10(b)-(d) for the startpoints
shown in Figure 10(a). The high-W structure still ap-
pears as a folded strip and the medium-W lines still
have a weakly twisted structure. We note that high-
and medium-W field lines appear to be better separated
into distinct regions than at t = 0.7396 ms (c.f. Figure
9(d) and 10(d)). To quantify this apparent variation in
“mixing” of high- and medium-W field lines, Figure 11
shows a mean “mixing ratio” between the two types of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

FIG. 8: Distributions of the quantities L(x0, t), R(x0, t), W(x0, t). The three columns represent L, R and W
respectively. The vertical direction follows the snapshot order

t = 0.7936 ms, 0.8448 ms, 0.896 ms, 0.9344 ms, 0.9728 ms. The L distributions depict L(x0, t)
2 and the R figures

depict ±
√
|R(x0, t)| so as to emphasize the features of the distributions.
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(a)

(b) (c) (d)

FIG. 9: Internal geometry of the central “flux rope” at
t = 0.7936 ms. (a) The set of field line startpoints, for

black points W > 0.0002 and green
0.0001 <W < 0.0002. (b) and (c) show these fieldline
sets separately (the green fieldlines are shown as light

green), (d) together.

field lines, computed at each z position within the do-
main. Indeed, this is consistently higher for the snapshot
in Figure 9 than that in Figure 10. This periodic varia-
tion in the coherence of mixing in W is further evidence
of periodic reconnective activity in the field’s core.

G. Summary

Applying the new reconnective activity measure R, to-
gether with a set of more established geometrical quan-
tities, has led to the following conclusions:

1. The initial magnetic field evolution establishes a
bundle of high helicity (L) field lines at the do-
main’s center. This structure is, however, never
very uniformly twisted and has complex substruc-

(a)

(b) (c) (d)

FIG. 10: Internal geometry of the central “flux rope”
at t = 0.896 ms. (a) The set of field line startpoints, for

blue points W > 0.0002 and green
0.0001 <W < 0.0002. (b) and (c) show these fieldline

sets separately, (d) together.
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FIG. 11: Average mixing ratio of the the high and low
W fieldlines as a function of z for the field line sets

shown in 9(d) and 10(d). This is essentially the ratio of
the number of low-W points to the number of high-W
points in a local neighbourhood of each high-W point,

averaged over all such points at a given z.
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ture with a mixture of writhed and twisted flux
elements.

2. The magnetic field then settles to steady periodic
activity in which its net helicity oscillates with a
fixed frequency about a uniformly growing value
(see Figure 6).

3. This oscillation appears to be driven by an ideal
kink instability. But this in turn drives periodically
evolving non-ideal (reconnective) activity, which
accounts for a most of the variation in helicity. In
particular, we have verified that the oscillation in
helicity is not purely the result of boundary mo-
tions, but due to periodic reconnection inside the
volume.

This analysis illustrates how the quantity R(x0, t) pro-
vides a valuable additional tool for probing magnetic
fields of non-trivial internal topology, adding significant
information to previous studies using the total magnetic
helicity [39, 50].

The reconnection measure R is defined purely in terms
of fieldline geometry rather than magnetic flux, so does
not require measurements of the electric field in the
plasma. However, in subsequent experiments at UCLA,
in which the flux ropes were further apart, the electric
field (both induced and electrostatic) has been measured
[20], and the peak value of field-line integrated parallel
electric field (corresponding to the magnetic flux recon-
nection rate in GMR theory) found to be of order 6 V.
To see that this is broadly consistent with our results,
we take take a peak value R ≈ 104 s−1, with an area of
≈ 30 cm2 (from Figure 8b) . The voltage is estimated
as 9.9 × 107 Mx s−1/108 = 0.99 V. The experiments in
[20] had a single dominant QSL due to to the flux rope
separation, whilst in the two moon experiments analyzed
here the current structure is less coherent, so lower peak
voltages should be expected.

IV. CONCLUSIONS

In section II we defined a new quantity R(x0, t) to
measure reconnection in braided vector fields that stretch
between two boundaries. The fundamental utility of R
is that – assuming perfect knowledge of the vector field’s
evolution – the field line connectivity changes if and only
if the distribution of R(x0, t) over all field lines changes.
Unlike the similar field-line helicity considered for mag-
netic braids [32, 33], the measure R does not depend on
the field strength, nor does it require the vector field to
be divergence free. In this respect, it is more general
and increases the range of potential applications beyond
plasma physics.

Although we have demonstrated the technique using
magnetic field data obtained from plasma experiments
in the UCLA Large Plasma Device, it extracts informa-
tion about changing field-line connectivity in a model-
free way, and as such has the potential for significantly

wider applicability. We have also shown how to remove
the contribution of an underlying ideal motion, which is
relevant both for plasma physics and vortex dynamics,
where one is interested only in connectivity changes with
respect to the underlying fluid.
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Appendix A: Proof of Theorem II.1

To prove Theorem II.1 (Section II B), we will apply a
previous result obtained for braided magnetic fields by
[32] and [33]. Given some divergence-free braided vector
field U(x), we define the field line mapping FU : D0 →
Dh by tracing field lines of U, and define the field line
helicity of a field line γ(x0) by

AU(x0) =

∫
γ(x0)

A ·U
Uz

dz. (A1)

Here U = ∇×A. We have the following result.

Theorem A.1 ([32, 33]) Let U and U′ be two
divergence-free braided vector fields, and suppose that
F−1
U′ ◦ FU is the identity when restricted to the boundary

∂D0. Then F−1
U′ ◦ FU is the identity everywhere on D0

if and only if AU(x0) = AU′(x0) for all x0 ∈ D0.

To show that Theorem II.1 follows from Theorem A.1,
we will construct appropriate divergence-free vector fields
U, U′ which have the same field line curves as the origi-
nal B at times t and t −∆t, respectively, but for which
AU(x0) = L(x0, t) and AU′(x0) = L(x0, t−∆t). The re-
sult will then follow. The condition that F−1

U′ ◦FU be the
identity on the boundary is always satisfied in our case,
since the two vector fields are assumed to be related by
a continuous time evolution with line-tied end-points on
D0 and Dh.

To construct U(x) (for example), we set U(x) =

U(x)b̂, where b̂ = B/|B| is a unit vector parallel to
B (which is well-defined since B 6= 0). We then fix
the magnitude U(x) such that (i) ∇ · U = 0 and (ii)
Uz(x1, y1, 0) = 1 on D0, by integrating the ODE

dU

ds
= −U∇ · b̂ (A2)

along each field line with arclength s. Then U has the
same field lines as B but is divergence free and normalized
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so that U · ẑ = 1 on D0. This works whether or not
the original B was divergence free, provided that B 6= 0
everywhere.

Next we use the results of [34] which show that the
quantity AU can always be written in terms of the wind-
ing number L(x0). In particular there is a gauge, the
winding gauge Aw, for which

Aw = Aw
1 x̂1 +Aw

2 x̂2 +Aw
z ẑ, (A3)

Aw
1 =

∫
Dz

−Bz(y)(x2 − y2)

r2
dy1dy2, (A4)

Aw
2 =

∫
Dz

Bz(y)(x1 − y1)

r2
dy1dy2, (A5)

Aw
z =

∫
Dz

B1(x2 − y2)−B2(x1 − y1)

r2
dy1dy2, (A6)

r2 = (x1 − y1)2 + (x2 − y2)2, (A7)

and

Aw ·U
Uz

=
1

2π

∫
Dz

dΘ(γ̃, γ, z)

dz
Uz(y) d2y, (A8)

where γ is the field line of U passing through x and γ̃
is the field line passing through y [34]. Finally we must
show that the field line helicity AU(x0) in the winding
gauge Aw equals L(x0). This will follow from the fact
that Uz|D0

= 1. We can pull this integral back to D0

(e.g. [32, 33]). Integrating along γ then gives

AU(x0) =
1

2π

∫
γ

∫
D0

dΘ(γ̃, γ, z)

dz
d2y0 dz = L(x0).
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physical Journal Letters 617, L85 (2004).
[15] A. Wilmot-Smith, G. Hornig, and D. Pontin, The As-

trophysical Journal 704, 1288 (2009).
[16] A. Wilmot-Smith, Phil. Trans. R. Soc. A 373, 20140265

(2015).
[17] J. Granot, The Astrophysical Journal Letters 816, L20

(2016).
[18] S. Tripathi and W. Gekelman, Physical review letters

105, 075005 (2010).
[19] W. Gekelman, E. Lawrence, and B. Van Compernolle,

The Astrophysical Journal 753, 131 (2012).
[20] W. Gekelman, T. De Haas, W. Daughton, B. Van Com-

pernolle, T. Intrator, and S. Vincena, Physical review
letters 116, 235101 (2016).

[21] E. Gouillart, J.-L. Thiffeault, and M. D. Finn, Physical
Review E 73, 036311 (2006).

[22] H. Moffatt and A. Tsinober, Annual review of fluid me-
chanics 24, 281 (1992).

[23] E. Parker, The Astrophysical Journal 174, 499 (1972).
[24] J. B. Taylor, Physical Review Letters 33, 1139 (1974).
[25] C. Mellor, C. Gerrard, K. Galsgaard, A. Hood, and

E. Priest, Solar Physics 227, 39 (2005).
[26] I. De Moortel and K. Galsgaard, Astronomy & Astro-

physics 451, 1101 (2006).
[27] A. Wilmot-Smith, D. Pontin, and G. Hornig, Astronomy

& Astrophysics 516, A5 (2010).
[28] D. Pontin, A. Wilmot-Smith, G. Hornig, and K. Gals-

gaard, Astronomy & Astrophysics 525, A57 (2011).
[29] A. Van Ballegooijen, M. Asgari-Targhi, and M. Berger,

The Astrophysical Journal 787, 87 (2014).
[30] A. J. Russell, A. R. Yeates, G. Hornig, and A. L. Wilmot-

Smith, Physics of Plasmas 22, 032106 (2015).
[31] C. Prior and A. Yeates, Astronomy & Astrophysics 591,

A16 (2016).
[32] A. R. Yeates and G. Hornig, Physics of Plasmas 20,

012102 (2013), arXiv:1208.2286 [physics.plasm-ph].
[33] A. R. Yeates and G. Hornig, in Journal of Physics Con-

ference Series, Journal of Physics Conference Series, Vol.
544 (2014) p. 012002, arXiv:1304.8064 [physics.plasm-
ph].

[34] C. Prior and A. Yeates, The Astrophysical Journal 787,
100 (2014).

[35] M. Hesse and K. Schindler, Journal of Geophysical Re-
search: Space Physics 93, 5559 (1988).

[36] M. Hesse and J. Birn, Advances in Space Research 13,
249 (1993).

[37] P. Wyper and D. Pontin, Physics of Plasmas 21, 082114
(2014).

[38] P. Wyper and D. Pontin, Physics of Plasmas 21, 102102
(2014).

[39] T. DeHaas and W. Gekelman, Physics of Plasmas 24,
072108 (2017).

[40] A. Wilmot-Smith and I. De Moortel, Astronomy & As-
trophysics 473, 615 (2007).

[41] D. Mackay and A. Van Ballegooijen, The Astrophysical
Journal 642, 1193 (2006).



13

[42] E. E. Lawrence and W. Gekelman, Physical review letters
103, 105002 (2009).

[43] B. Van Compernolle and W. Gekelman, Physics of Plas-
mas 19, 102102 (2012).

[44] W. Gekelman, B. Van Compernolle, T. DeHaas, and
S. Vincena, Plasma Physics and Controlled Fusion 56,
064002 (2014).

[45] M. A. Berger and C. Prior, Journal of Physics A: Math-
ematical and General 39, 8321 (2006).

[46] D. Leneman, W. Gekelman, and J. Maggs, Review of
scientific instruments 77, 015108 (2006).

[47] D. Ryutov, I. Furno, T. Intrator, S. Abbate, and

T. Madziwa-Nussinov, Physics of plasmas 13, 032105
(2006).

[48] W. Gekelman, T. DeHaas, P. Pribyl, S. Vincena,
B. Van Compernolle, and R. Sydora, Physics of Plas-
mas 24, 070701 (2017).
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