A Burton-Johnson
Generation of the Mt Kinabalu Granite by Crustal Contamination of Intraplate Magma Modelled by Equilibrated Major Element Assimilation with Fractional Crystallization (EME-AFC)
Burton-Johnson, A; Macpherson, CG; Ottley, CJ; Nowell, GM; Boyce, AJ
Authors
Abstract
New geochemical data are presented for the composite units of the Mount Kinabalu granitoid intrusion of Borneo and utilised to explore the discrimination between crustal- and mantle-derived granitic magmas. The geochemical data demonstrate that the units making up this composite intrusion became more potassic through time. This was accompanied by an evolution of isotope ratios from a continental-affinity towards a slightly more mantle-affinity (87Sr/86Sri ∼0·7078; 143Nd/144Ndi ∼0·51245; 206Pb/204Pbi ∼18·756 for the oldest unit compared to 87Sr/86Sri ∼0·7065, 143Nd/144Ndi ∼0·51250 and 206Pb/204Pbi ∼18·721 for the younger units). Oxygen isotope ratios (calculated whole-rock δ18O of +6·5–9·3‰) do not show a clear trend with time. The isotopic data indicate that the magma cannot result only from fractional crystallization of a mantle-derived magma. Alkali metal compositions show that crustal anatexis is also an unsuitable process for genesis of the intrusion. The data indicate that the high-K units were generated by fractional crystallization of a primary, mafic magma, followed by assimilation of the partially melted sedimentary overburden. We present a new, Equilibrated Major Element -Assimilation with Fractional Crystallization (EME-AFC) approach for simultaneously modelling the major element, trace element, and radiogenic and oxygen isotope compositions during such magmatic differentiation; addressing the lack of current AFC modelling approaches for felsic, amphibole- or biotite-bearing systems. We propose that Mt Kinabalu was generated through low degree melting of upwelling fertile metasomatized mantle driven by regional crustal extension in the Late Miocene.
Citation
Burton-Johnson, A., Macpherson, C., Ottley, C., Nowell, G., & Boyce, A. (2019). Generation of the Mt Kinabalu Granite by Crustal Contamination of Intraplate Magma Modelled by Equilibrated Major Element Assimilation with Fractional Crystallization (EME-AFC). Journal of Petrology, 60(7), 1461-1487. https://doi.org/10.1093/petrology/egz036
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 11, 2019 |
Online Publication Date | Jul 16, 2019 |
Publication Date | Jul 16, 2019 |
Deposit Date | Sep 2, 2019 |
Publicly Available Date | Jul 16, 2020 |
Journal | Journal of Petrology |
Print ISSN | 0022-3530 |
Electronic ISSN | 1460-2415 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 60 |
Issue | 7 |
Pages | 1461-1487 |
DOI | https://doi.org/10.1093/petrology/egz036 |
Public URL | https://durham-repository.worktribe.com/output/1323740 |
Files
Accepted Journal Article
(2.5 Mb)
PDF
Copyright Statement
This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Petrology following peer review. The version of record Burton-Johnson, A, Macpherson, C G, Ottley, C J, Nowell, G M & Boyce, A J (2019). Generation of the Mt Kinabalu Granite by Crustal Contamination of Intraplate Magma Modelled by Equilibrated Major Element Assimilation with Fractional Crystallization (EME-AFC). Journal of Petrology 60(7): 1461-1487 is available online at: https://doi.org/10.1093/petrology/egz036
You might also like
Jordanian migration and mobility in the Middle Bronze Age (ca. 2100–1550 BCE) at Pella
(2021)
Journal Article
The Principles of Helium Exploration
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search