Skip to main content

Research Repository

Advanced Search

The Imprint of Cosmic Reionization on the Luminosity Function of Galaxies

Bose, Sownak; Deason, Alis J.; Frenk, Carlos S.

The Imprint of Cosmic Reionization on the Luminosity Function of Galaxies Thumbnail


Sownak Bose


The (re)ionization of hydrogen in the early universe has a profound effect on the formation of the first galaxies: by raising the gas temperature and pressure, it prevents gas from cooling into small halos, thus affecting the abundance of present-day small galaxies. Using the Galform semi-analytic model of galaxy formation, we show that two key aspects of the reionization process—when reionization takes place and the characteristic scale below which it suppresses galaxy formation—are imprinted in the luminosity function of dwarf galaxies. We focus on the luminosity function of satellites of galaxies like the Milky Way and the LMC, which is easier to measure than the luminosity function of the dwarf population as a whole. Our results show that the details of these two characteristic properties of reionization determine the shape of the luminosity distribution of satellites in a unique way, and are largely independent of the other details of the galaxy formation model. Our models generically predict a bimodality in the distribution of satellites as a function of luminosity: a population of faint satellites and population of bright satellites separated by a "valley" forged by reionization. We show that this bimodal distribution is present at high statistical significance in the combined satellite luminosity function of the Milky Way and M31. We make predictions for the expected number of satellites around LMC-mass dwarfs where the bimodality may also be measurable in future observational programs. Our preferred model predicts a total of 26 ± 10 (68% confidence) satellites brighter than M V = 0 in LMC-mass systems.


Bose, S., Deason, A. J., & Frenk, C. S. (2018). The Imprint of Cosmic Reionization on the Luminosity Function of Galaxies. Astrophysical Journal, 863(2), Article 123.

Journal Article Type Article
Acceptance Date Jun 7, 2018
Online Publication Date Aug 16, 2018
Publication Date Aug 16, 2018
Deposit Date Sep 6, 2018
Publicly Available Date Sep 6, 2018
Journal Astrophysical Journal
Print ISSN 0004-637X
Publisher American Astronomical Society
Peer Reviewed Peer Reviewed
Volume 863
Issue 2
Article Number 123


Published Journal Article (1.7 Mb)

Copyright Statement
© 2018. The American Astronomical Society. All rights reserved.

You might also like

Downloadable Citations