Dr Mehdi Keshavarz Hedayati mehdi.keshavarz-hedayati@durham.ac.uk
Associate Professor
Dr Mehdi Keshavarz Hedayati mehdi.keshavarz-hedayati@durham.ac.uk
Associate Professor
Mady Elbahri
Reduction of unwanted light reflection from a surface of a substance is very essential for improvement of the performance of optical and photonic devices. Antireflective coatings (ARCs) made of single or stacking layers of dielectrics, nano/microstructures or a mixture of both are the conventional design geometry for suppression of reflection. Recent progress in theoretical nanophotonics and nanofabrication has enabled more flexibility in design and fabrication of miniaturized coatings which has in turn advanced the field of ARCs considerably. In particular, the emergence of plasmonic and metasurfaces allows for the realization of broadband and angular-insensitive ARC coatings at an order of magnitude thinner than the operational wavelengths. In this review, a short overview of the development of ARCs, with particular attention paid to the state-of-the-art plasmonic- and metasurface-based antireflective surfaces, is presented.
Hedayati, M. K., & Elbahri, M. (2016). Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review. Materials, 9(6), Article 497. https://doi.org/10.3390/ma9060497
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 15, 2016 |
Online Publication Date | Jun 21, 2016 |
Publication Date | 2016-06 |
Deposit Date | Oct 1, 2018 |
Journal | Materials |
Print ISSN | 1996-1944 |
Electronic ISSN | 1996-1944 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 9 |
Issue | 6 |
Article Number | 497 |
DOI | https://doi.org/10.3390/ma9060497 |
Public URL | https://durham-repository.worktribe.com/output/1317644 |
Inverse design of lateral hybrid metasurfaces structural colour: an AI approach
(2024)
Journal Article
Ultra-stretchable active metasurfaces for high-performance structural color
(2023)
Journal Article
Mechanically tunable metasurface with large gamut of color: Lateral hybrid system
(2022)
Journal Article
Inverse Design of Distributed Bragg Reflectors Using Deep Learning
(2022)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search