D Föhring
Atmospheric scintillation noise in ground-based exoplanet photometry
Föhring, D; Wilson, RW; Osborn, J; Dhillon, VS
Authors
Dr Richard Wilson r.w.wilson@durham.ac.uk
Associate Professor
Professor James Osborn james.osborn@durham.ac.uk
Professor
VS Dhillon
Abstract
Atmospheric scintillation caused by optical turbulence in the Earth’s atmosphere can be the dominant source of noise in ground-based photometric observations of bright targets, which is a particular concern for ground-based exoplanet transit photometry. We demonstrate the implications of atmospheric scintillation for exoplanet transit photometry through contemporaneous turbulence profiling and transit observations. We find a strong correlation between measured intensity variations and scintillation determined through optical turbulence profiling. This correlation indicates that turbulence profiling can be used to accurately model the amount of scintillation noise present in photometric observations on another telescope at the same site. We examine the conditions under which scintillation correction would be beneficial for transit photometry through turbulence profiling, and find that for the atmosphere of La Palma, scintillation dominates for bright targets of magnitude above V ∼ 10.1 mag for a 0.5 m telescope, and at V ∼ 11.7 mag for a 4.2 m telescope under median atmospheric conditions. Through Markov-chain Monte Carlo methods we examine the effect of scintillation noise on the uncertainty of the measured exoplanet parameters, and determine the regimes where scintillation correction is especially beneficial. The ability to model the amount of noise in observations due to scintillation, given an understanding of the atmosphere, is a crucial test for our understanding of scintillation and the overall noise budget of our observations.
Citation
Föhring, D., Wilson, R., Osborn, J., & Dhillon, V. (2019). Atmospheric scintillation noise in ground-based exoplanet photometry. Monthly Notices of the Royal Astronomical Society, 489(4), 5098-5108. https://doi.org/10.1093/mnras/stz2444
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 22, 2019 |
Online Publication Date | Sep 19, 2019 |
Publication Date | Nov 30, 2019 |
Deposit Date | Oct 22, 2019 |
Publicly Available Date | Oct 28, 2019 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 489 |
Issue | 4 |
Pages | 5098-5108 |
DOI | https://doi.org/10.1093/mnras/stz2444 |
Public URL | https://durham-repository.worktribe.com/output/1317318 |
Files
Published Journal Article
(3.6 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2019 The Royal Astronomical Society. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
A comparison of next-generation turbulence profiling instruments at Paranal
(2024)
Journal Article
Optimized temporal binning of comparison star measurements for differential photometry
(2023)
Journal Article
SHIMM: a versatile seeing monitor for astronomy
(2023)
Journal Article
FASS: a turbulence profiler based on a fast, low-noise camera
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search