David Cortés-Ortuño
Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction
Cortés-Ortuño, David; Beg, Marijan; Nehruji, Vanessa; Breth, Leoni; Pepper, Ryan; Kluyver, Thomas; Downing, Gary; Hesjedal, Thorsten; Hatton, Peter; Lancaster, Tom; Hertel, Riccardo; Hovorka, Ondrej; Fangohr, Hans
Authors
Marijan Beg
Vanessa Nehruji
Leoni Breth
Ryan Pepper
Thomas Kluyver
Gary Downing
Thorsten Hesjedal
Peter Hatton
Professor Tom Lancaster tom.lancaster@durham.ac.uk
Professor
Riccardo Hertel
Ondrej Hovorka
Hans Fangohr
Abstract
Understanding the role of the Dzyaloshinskii–Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising Néel-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without the DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility.
Citation
Cortés-Ortuño, D., Beg, M., Nehruji, V., Breth, L., Pepper, R., Kluyver, T., Downing, G., Hesjedal, T., Hatton, P., Lancaster, T., Hertel, R., Hovorka, O., & Fangohr, H. (2018). Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction. New Journal of Physics, 20(11), Article 113015. https://doi.org/10.1088/1367-2630/aaea1c
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 22, 2018 |
Online Publication Date | Nov 13, 2018 |
Publication Date | Nov 13, 2018 |
Deposit Date | Nov 14, 2018 |
Publicly Available Date | Nov 20, 2018 |
Journal | New Journal of Physics |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 20 |
Issue | 11 |
Article Number | 113015 |
DOI | https://doi.org/10.1088/1367-2630/aaea1c |
Public URL | https://durham-repository.worktribe.com/output/1314041 |
Related Public URLs | https://arxiv.org/abs/1803.11174 |
Files
Published Journal Article
(1.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
You might also like
Studying spin diffusion and quantum entanglement with LF-µSR
(2023)
Journal Article
Many-body quantum muon effects and quadrupolar coupling in solids
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search