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Abstract
Understanding the role of theDzyaloshinskii–Moriya interaction (DMI) for the formationof
helimagnetic order, aswell as the emergence of skyrmions inmagnetic systems that lack inversion
symmetry, has found increasing interest due to the significant potential for novel spinbased
technologies. Candidatematerials to host skyrmions include those belonging to the B20 group such as
FeGe, known for stabilisingBloch-like skyrmions, interfacial systems such as cobaltmultilayers or Pd/
Fe bilayers on topof Ir(111), known for stabilisingNéel-like skyrmions, and, recently, alloyswith a
crystallographic symmetrywhere anti-skyrmions are stabilised.Micromagnetic simulations have
becomea standard approach to aid the design andoptimisationof spintronic andmagnetic nanodevices
and are also applied to themodelling of device applicationswhichmake use of skyrmions. Several public
domainmicromagnetic simulation packages such asOOMMF,MuMax3 andFidimag already offer
implementations of differentDMI terms. It is therefore highly desirable to propose a so-called
micromagnetic standardproblem thatwould allowone tobenchmark and test the different software
packages in a similarway as is done for ferromagneticmaterialswithout theDMI.Here,weprovide a
sequence ofwell-defined and increasingly complex computational problems formagneticmaterialswith
DMI.Our test problems include 1D, 2Dand3Ddomains, spinwavedynamics in the presence ofDMI,
and validationof the analytical andnumerical solutions includinguniformmagnetisation, edge tilting,
spinwaves and skyrmion formation. This set of problems canbe usedbydevelopers andusers of new
micromagnetic simulation codes for testing and validation andhence establishing scientific credibility.

1. Introduction

In computational science so-called standard problems (or benchmark or test problems) denote a class of
problems that are defined in order to test the capability of a newly developed software package to produce
scientifically trustworthy results. In the field ofmicromagnetismwhich, to a significant extent, relies on results
produced by computer simulations, themicromagneticmodeling activity group (μmag) at theNational
Institute of Standards andTechnology has helped to define and gather a series of such standard problems for
ferromagneticmaterials on their website7. Those five problems cover static as well as dynamic phenomena and
over the yearsmore standard problems have been proposed including the physics of spin transfer torque [1],
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spinwaves [2] and ferromagnetic resonance [3]. Thus far, however, standard problems formaterials with
Dzyaloshinskii–Moriya interaction (DMI) have not been defined in the literature. Originally, the so-calledDMI
was phenomenologically described byDzyaloshinskii [4, 5] to explain the effect of weak ferromagnetism in
antiferromagnets, and later it was theoretically explained byMoriya [6] as a spin–orbit coupling effect. TheDMI
effect is observable inmagneticmaterials with broken inversion symmetry and can be present either in the
crystallographic structure of thematerial [7, 8] or at the interface of a ferromagnet with a heavymetal [9–11]. In
contrast to the favoured parallel alignment of neighbouring spins from the ferromagnetic exchange interaction,
theDMI favours the perpendicular alignment of neighbouring spins. The competition between these
interactions allow the observation of chiralmagnetic configurations such as helices or skyrmions, where spins
have afixed sense of rotation, which is known as chirality.

Skyrmions are localised and topologically non-trivial vortex-likemagnetic configurations.Although theywere
theoretically predicted almost thirty years ago [7], only recently have skyrmions started to attract significant attention
by the scientific community because ofmultiple recent experimental observations of skyrmionphases in a variety of
materialswithdifferentDMImechanisms [12–20]. Themagnetic profile of a skyrmion changes according to the kind
ofDMIpresent in thematerial.Well-known skyrmionic textures areNéel skyrmions, Bloch skyrmions and anti-
skyrmions [10, 11, 20, 21]. The former twoarenamed according to thedomainwall-like rotation sense of the spins.

Thefixed chirality of spins imposed by theDMI causes skyrmions to have different properties from
structures such asmagnetic bubbles [22–24] or vortices [25–27]. In addition, the antisymmetric nature of the
DMIhas an influence on the dynamics of excitations such as spinwaves,making themdependent on their
propagation direction in thematerial.

In this paper,wedefine a set ofmicromagnetic standardproblems for systemswith differentDMI
mechanisms. This set of problems is aimed at verifying the implementation of theDMIby comparing the
numerical solutions fromdifferent softwarewith semi-analytical results frompublished studies [28, 29]where
possible. In this context, we test these problemsusing three open-sourcemicromagnetic codes,OOMMF [30],
MuMax3 [31] andFidimag [32]. In section 3we introduce our analysis bydefining the theoretical framework to
describe ferromagnetic systemswithDMI,which is used to obtainnumerical and analytical solutions.
Consequentlywedescribe theproblems starting by the specificationof a one-dimensional sample in section 4,
where theDMIhas a distinctive influenceon theboundary conditions. Then in section5we test the stabilisation of
skyrmionic textures in a disk geometry for different kinds ofDMI. In section 7we compute the spinwave spectrum
of an interfacial system in a long stripe and show the antisymmetry produced by theDMI. Finally, in section 6we
analyse a skyrmion in a bulk system,where the propagationof the skyrmion configuration across the thickness of
the sample is known tobemodulated towards the surfaces because spins acquire an extra radial component [33].

2. TheDzyaloshinskii–Moriya interaction

TheDzyaloshinskii–Moriya interaction [4–6] (DMI) is a spin–orbit coupling effect that arises in crystals with a
broken inversion symmetry. In thesematerials the combination of the exchange and spin–orbit interactions
between electrons leads to an effective interaction betweenmagneticmoments Si of the form

= ´· ( ) ( )D S SH , 1DM 1 2

where the vector D depends on the induced orbitalmoments. According to the underlying crystal system, for
two atoms it is usually possible to strongly constrain the direction of D through symmetry arguments [6, 9, 34].
When dealingwith the continuum (micromagnetic) version of theDMI, the same above considerations apply
butmay be generalized through the use of a phenomenological approach based on Lifshitz invariants (LIs)
[35, 36]. Systems featuring LIs range fromChern–Simons terms in gaugefield theories [37], to chiral liquid
crystals [38], but also includemagnetic systems hostingDMIs. In this latter context, DMIs are described by
inhomogeneous invariants in the formof spatial variations of themagnetisationmwith the structure [35, 36]
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where i, j, kä{x, y, z}. The precise forms of the LIs are dictated by the crystal symmetry of the system and they
determine themicromagnetic expression of its DMI energy. In this continuum limit, the energywritten in terms
of LIs encodes symmetry constraints elegantly using only a single parameterD, by including theway inwhich the
magnetisation (or spin) changes along the different spatial directions. These continuum expressions of theDMI
energy are equivalent to the discrete version (equation (1)).

TheDMI phenomenon also occurs at surfaces [9] and in interfacial systems [9, 10, 39–41] because of the
breaking of symmetries. In the latter case, chiral interactions which lead to LIs in the free energy of the system,
could arise frombroken symmetries reflecting latticemismatch, defects or interdiffusion between layers [41]. A
specific example of this is interfacial DMI arising from the indirect exchangewithin a triangle composed of two
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spins and a non-magnetic atomwith strong SO coupling [10, 39, 40]. From the atomistic description of
interfacial DMI it is possible to derive expressions in the continuumbased on LIs as shown in [28, 42].

In general, for bulk and interfacial systems the application of the LI-based continuum theory for
inhomogeneousDMI, leads to the prediction of a rich variety of non-collinearmagnetic structures such as
vortex configurations [7, 8, 29, 41]. An extended discussion on the theory of theDMI and further examples are
discussed in sectionS1 of the supplementarymaterial available online at stacks.iop.org/NJP/20/113015/
mmedia.

3.Micromagneticmodel of theDMI and chiral configurations

For the description of chiral structures inmagneticmaterials withDMI it is customary towrite the
magnetisation in spherical coordinates that spatially depend on cylindrical coordinates [8, 29]

= = Q Y Q Y Q( ) ( ) ( )m m mm , , sin cos , sin sin , cos , 3x y z

where (Θ,Ψ) are spherical angles. In the general case,Θ=Θ(r,f, z) andΨ=Ψ(r,f, z)with (r,f, z) being the
cylindrical coordinates. In the case of two-dimensional systems ormagnetic configurationswithoutmodulation
along the thickness of the sample,Θ andΨ are specified independent of the z-direction.

For a chiral ferromagnet without inversion symmetry, we are going to describe stablemagnetic
configurations in confined geometries [28]when considering symmetric exchange andDMI interactions, an
uniaxial anisotropy and in some cases, an applied field.Magnetostatic interactions will not be considered
because themain idea of the standard problems is the verification of theDMI. The demagnetising field is usually
non-trivial tomodel analytically and only adds an extra level of complexity. An exceptionwill bemade to the
dynamics standard problem since the theoretical solution to the problem iswell known. According to this, a
general description of the energy of themagnetic system is given by
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whereA is the exchange constant,Ku is the uniaxial anisotropy constant,H the applied field and the last term is
theDMI energy density, which can bewritten as a sumof LIs [7, 8, 29] (see section 2). For the sake of
completeness, in the followingwewrite theDMI expressions for different crystal symmetries in LIs and vector
notation. In the case of thin systems the out of plane directionwill correspond to the z-direction, whichmeans
the symmetry breaking originating at the surface normal to this direction. From the vector notation theDMI
expressions can be generalised to any coordinate system, which can be relevant in afinite element formulation.
For amaterial with symmetry classT orO, theDMI energy density is specified as
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For a thin filmwith interfacial DMI or a crystal with symmetry classCnv, with n>2, and located in the x–y
plane, the energy density of theDMI is
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For aCnv symmetry with n 2 the in-plane components of theDMvector of equation (1) are not uniquely
defined [21, 43] and it would be necessarymore than oneDMI constant in equation (7, 8). For a crystal with
symmetry class D d2 , theDMI energy density reads [7]
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Axially symmetricmagnetic configurations that are uniform along the z-direction can be found by
substituting themagnetisationm (equation (3)) into equation (4), withΘ=Θ(r). Accepted solutions forΨ are
obtained according to the structure of theDMI [7, 8, 29]. For theT classmaterial,Ψ=f+j, withj=±π/2.
In interfacial systems, theDMIhas the structure of aCnv symmetry classmaterial, whereΨ=f+jwith
j=0,π. For theD2d symmetry class an accepted solution isΨ=−f+π/2.
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4.One-dimensional case: edge tilting

In a one-dimensionalmagnetic system in the x-direction, where xä[−L/2, L/2], and at zerofield, we can
simplify the expression for the energy (equation (4)) usingΘ=Θ(x) andΨ=0 (interfacial), where

= Q Q( )m sin , 0, cos , orΨ=π/2 (bulk), where = Q Q( )m 0, sin , cos .We therefore obtain the following
differential equation afterminimising the energywith a variational approach [28]

Q
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Q Q
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whereD = A K and x = A D2 . According to our definition ofDMIs in equations (5, 6) and (7, 8), the
positive sign in the boundary condition refers to the interfacial and D d2 cases and the negative sign to theT class
material.We numerically solve equations (11) and (12)using the shootingmethod. Solutions of these equations
include a quasi-uniform configuration, where spins are tilted at the boundaries, and cycloids with different
number of spin spirals. Although the quasi-uniformordering is always an equilibrium configuration, the cycloid
solutions depend on theDMI strength and the length of the system. For the chosenDMImagnitude of -3 mJ m 2

and length of 100nm the quasi-uniform configuration is ametastable state, because a single spiral cycloid has
lower energy for lengths above a critical value around 50nm (see sectionS3 of the supplementarymaterial).
Becausewe are interested in comparing the tilting at the edges of the system, which is enhanced by a strongDMI,
with the semi-analytical solution, we focus on the quasi-uniform solution and take advantage of a simplified
evaluation ofΘ at the boundary. For this, we refer to the alternative condition forΘ at x=−L/2 or x=L/2
derived in [28], which reads

x
Q = 

D ( )sin . 13

The condition (13) follows directly from the quasi-uniform solution, where at the interior of the sampleΘ is
constant and equal to zero, as well as its first derivative, thusfixing the constant that arises after integrating
equation (11). This assumption is validwhen the system is large enough by a fewΔmagnitudes, which sets the
characteristic length scale for the edge tilting [28]. Alternatively, in [28] the condition is justifiedwhen the
systemhas sufficiently large anisotropy to avoid the formation of cycloids. Furthermore, we notice that the ratio
ofD and the criticalmagnitude p=D AK4c u is around 1.1, thus the constant arising from integrating
equation (11) should tend to zero, as shown in [28]. This condition can also be seen as a significantly large
cycloid period. If the length L of the system is increased the formation of cycloidswould be favoured [44].With
the simplified evaluation ofΘ at the boundary it is straightforward to apply the shootingmethod. An alternative
calculation to obtain general solutions of equations (11) and (12), as employed in [44], requires amore careful
analysis of the boundary conditions.

Depending on the chirality of the system,which can be observed from the simulations, wefix the condition
xQ - = D( ) ( )L 2 arcsin and vary dΘ(−L/ 2)/dx until finding a solution that satisfiesQ =( )L 2

xD( )arcsin . The upper sign+ refers to the interfacial case and the bottom sign—to the bulkDMI case.
Infigures 1(a) and (b)we compare results from the theory and simulations of the one-dimensional problem,

for systemswith interfacial (Cnv) and bulk (T)DMI, respectively. For testing purposes, in every case we have
specifiedmicromagnetic parameters for an artificialmaterial with a strongDMI and uniaxial anisotropy, as

shown in table 1. Thismaterial has associated an exchange length of m= »( )L A M2 5.3 nmex 0 s
2 and a

helical length of p= »∣ ∣L A D4 54.5 nmD . Additionally, the characteristic parameters from equation (13) are
Δ=5.7 nm and ξ=5.7 nm,whichmeansΘ≈±0.66 rad at the boundary ormz≈±0.75. Simulationswere
performedwith the finite differenceOOMMF, Fidimag andMuMax3 software. In our examples we used a
discretisation cell of 1×1×1 nm3 volume, whose dimensions arewell below the exchange length. Thefinal
magnetic configurationswere obtained by relaxing an almost ferromagnetic state, i.e.m≈(0.00, 0.11, 0.99),
using either the Landau–Lifshitz–Gilbert equation or aminimisationmethod. The profile of the z-component
and either the x-component of themagnetisation, for the case of interfacial DMI, or the y-component for the
bulkDMI case, specify the chirality of themagnetic configuration. To obtain the correct chirality in the
simulations theDMI energy expressionmust be discretised according to the procedure shown in appendix A.
For a one-dimensional system, and sincewe are using commonmagnetic parameters, themajor difference
between them profiles of systemswith different type ofDMI, is the orientation of the spin rotation. Therefore,
for a crystal withT or D d2 symmetry, the profile of themy component resemble themx profile of the interfacial
DMI case, which is according to the spin rotation favoured in theT and D d2 symmetries. Accordingly, we only
show the interfacial and bulkDMI solutions infigures 1(a) and (b), respectively. In the plots, data points from
the simulations are comparedwith the solutions of equations (11) and (12). In general, OOMMFand Fidimag
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produce similar results that perfectly agree with the theoretical curves obtained from the solutions of the
differential equations (as shown infigure 1). Specifically, in the interfacial case the average relative error
(between the semi-analytical and simulation curves) for themx component is about 3.8% and formz is about
0.3%. Equivalentmagnitudes are found for the bulkDMI system. Smaller errors are obtainedwhen reducing the
mesh spacing, for instance, the previousmagnitudes reduce to 0.44% and 0.03% formx andmz, respectively,
when using amesh discretisation of 0.1 nm in the x-direction. In the case ofMuMax3, a similar agreement is
foundwhen imposing periodic boundary conditions along the y-direction of the one-dimensional system (with
a single repetition across thewidth although the number should not affect the results sincewe are not
considering dipolar interactions) because theDMI calculation is implementedwithNeumann boundary
conditions [31, 45] rather than free boundaries8 (see sectionS2 of the supplementarymaterial for a comparison
when not using periodic boundaries).

Figure 1.Comparison of themagnetisation components along a one-dimensional wirewith interfacial (a) or bulk (b)DMI. Thewire
long axis is specified in the x-direction. The plot shows solutions from a theoretical description of the systemusing an ordinary
differential equation (ODE), and solutions from the simulations using theOOMMF, Fidimag andMuMax3 codes.

Table 1.One-dimensional problem specifications.

One-dimensional wire

Dimensions 100 nm×1 nm×1 nm
Magnetic parameters

A 13 pJ m−1

D 3.0 mJ m−2

Ms 0.86 MA m−1

Ku 0.4 MJ m−3

8
This argumentwas discussed through an internal communicationwith theMuMax3 team. Free boundaries are available in the latest

MuMax3 releases.
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5. Two-dimensional case:magnetisation profile of a skyrmion

It has been shown in [28, 46, 47] that in a confined geometry spins at the boundary of the system slightly tilt
because of the boundary condition and, due to the confinement, skyrmions can be stabilised at zeromagnetic
field. Experimentally observed skyrmion configurations inmaterials with three different types ofDMIs have
been reported in the literature: (i)Interfacial DMI, which favoursNéel spin rotations and is equivalent to the
DMI found in systemswithCnv crystal symmetry. (ii)The so-called bulkDMI, which favours Bloch spin
rotations and is found in systemswith symmetry classT orO, such as FeGe. And, recently, (iii)aDMI found in
systemswith symmetry class D d2 where structures known as anti-skyrmions can be stabilised [20] (anti-
skyrmions have also been found in interfacial systems but they are best describedwithin a discrete spin
formalism [21, 43, 48], whereDMvectors are determined by symmetry rules or ab initio calculations). These
threeDMImechanisms can be described by a combination of LIs with a singleDMI constant.

We propose a two-dimensional cylindrical systemof 50 nm radius and 2 nm thickness to test the
stabilisation of skyrmions using the three aforementionedDMIs, usingmagnetic parameters from the artificial
material of section 4 (see table 2).

We summarise infigure 2 results obtained for three different skyrmion structures stabilisedwith the three
kind ofDMIs. Thesemagnetic configurationswere simulatedwithfinite difference codes, as shown in
figure 2(a), which shows a good agreement between them, thuswe only plot results fromFidimag infigure 2(b)
(see sectionS4 in the supplementarymaterial for amore detailed comparison). Simulations were specifiedwith
cell sizes of 2 nm×2 nm×2 nmvolume. The three skyrmions (see figure 2(c)) are energetically equivalent and
have a similar configuration, specifically, themagnetisation profile depends only on the accepted solution for the
Ψ angle when described in spherical coordinates. Therefore, the out of plane component of the spinsmustmatch
for the three configurations. Solving this system analytically, we can calculate theΘ angle for the skyrmion
solutionwith the corresponding boundary condition [28], byminimising the right-hand side of equation (4).
We compare the out of plane component of the spins, = Qm cosz , with that of the simulations by extracting the
data from the spins along the disk diameter, whichwe show infigure 2(a). As in the one-dimensional case, we
observe the characteristic canting of spins at the boundary of the sample.

To distinguish the three different systems, we compute the skyrmion radius rsk by finding the value of r
wheremz(r)=0, and plot the radial component of the spinsmr (see appendix B) located at a distance rsk from
the disk centre. Since spins are in-plane at r=rsk, thenΘ=π/2 and the radial component (see appendix B and
equation (3)) as a function off is f f f= Q Y - = Y -( ) ( ( )) ( ) ( )m r r, sin cos cosr sk sk . Therefore, =m 1r

Cnv
sk

,

=m 0r
T
sk

and f= ( )m sin 2r
D d
sk

2 . According to this, we see in figure 2(b) the simulated skyrmion radial profiles at
r=rsk for theCnv,T and D d2 symmetry classmaterials, which agreewith the theory (shown in dashed lines and
curves).

Infigure 2(c)we illustrate the three different configurations. The radial component of themagnetisation is
shownwith a colourmap and the out-of-plane component is shown in grayscale, wherewhitemeans =∣ ∣m 1z ,
thus it is possible to distinguish the region that defines the skyrmion radius, which is highlighted in black, and
the slight spin canting at the disk boundary.

For this two-dimensional problem, the three simulation packages produce similar results and agreewell in
the solutions,matching the boundary conditions from the theory. The theory predicts a skyrmion radius of
rsk≈22. 03 nm. For the calculation of the skyrmion radius in the simulation results, we use a third order spline
interpolation of themz profile from figure 2(a). According to this, OOMMFand Fidimag give a radius of
21.87 nmandMuMax3 produces a radius of 22.1nm,which is a slightly better approximation to the theoretical
result.

Table 2.Two-dimensional problem
specifications.

Two-dimensional disk

Radius 50 nm

Thickness 2 nm

Magnetic parameters

A 13 pJ m−1

D 3.0 mJ m−2

Ms 0.86 MA m−1

Ku 0.4 MJ m−3
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6. Three-dimensional case: skyrmionmodulation along thickness

Skyrmions hosted in interfacial systems are in general effectively two-dimensional structures since these samples
are a fewmonolayers thick. In contrast, in bulk systemswithT orO symmetry class, skyrmions can form long
tubes by propagating their double-twistmodulation along their symmetry axis [14, 33, 46, 49, 50], whichwewill
assume is along the sample thickness.Moreover, it has been shown byRybakov et al [33] that there is an extra

Figure 2.Magnetisation profile in disks with three differentDMIs frommaterials with symmetry classCnv (interfacial),T orO (bulk)
and D d2 . (a)Comparison of the out-of-plane component of themagnetisationmz from the semi-analytical solution of the ordinary
differential equation (ODE) that describes the interfacial system, against results from the simulations using three different codes.
(b)Radial component of themagnetisation in cylindrical coordinates, as a function of the azimuthal angle, computed along the
skyrmion radius rsk (wheremz=0). The data points shown in the plot were obtainedwith the Fidimag code and analytical solutions
are drawn as thin dashed lines. (c) Snapshots of the disk system for the three differentDMI types. Arrows are coloured according to the
radial component of themagnetisation. The background, in grey scale, illustrates the absolute value of the out of plane component of
themagnetisation, wherewhitemeans =∣ ∣m 1z and blackmeans zero. The skyrmion centre is in the+z-direction, according to
plot(a).

Table 3.Three-dimensional problem
specifications.

Cylinder

Radius 91.5 nm

Thickness 21 nm

Magnetic parameters

A 8.78 pJ m−1

D 1.58 mJ m−2

Ms 0.384 MA m−1

μ0H (0.0, 0.0, 0.4)T
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spinmodulation along the skyrmion axis that can be approximately described by a linear conicalmode solution.
This extramodulation is energetically favourable in a range of appliedmagnetic field and sample thickness
values, where the latest is defined below the helix period LD. Themodulation is greatest at the sample surfaces
and is not present at the sample centre along the thickness. It can be identified by an extra radial component
acquired by the spins, which is alsomaximal near the regionwheremz=0 in every slice normal to z (see
figure 3(c)). Themodulation has its origin in the ( )

yx
z invariant of equation (5, 6) [16]. This term imposes spatial

modulations across the z-direction of the sample, which corresponds, in our case, to the thickness direction.
We define an isolated skyrmion in a FeGe cylinder of 183 nm diameter and 21 nm thickness with its long

axis (the thickness) in the z-direction (see the system illustrated infigure 4). The parameters and dimensions of
the system are detailed in table 3.We simulate the cylinder usingfinite differences with cells of dimension
1 nm×1 nm×1 nm, thus obtaining the (x, y) coordinates of the cell centres in the [−91, 91] nm range and the
z-coordinates in the [−10, 10] nm range, remembering that themagnetisation is assumed constant within a
finite difference cell which spans a range of±0.5 nm in every spatial direction around its centre. Relaxing the
systemwith an initial state resembling a Bloch skyrmion [47], and an appliedmagnetic field ofBz=0.4 T, we

Figure 3.Cylindrical components of themagnetisation field of an isolated skyrmion in a FeGe cylinder. These numerical results were
obtained using the Fidimag code. (a)Profiles across the centre of an x–y plane-cut of the cylinder (see red dashed line in snapshots of
plot(c)) at z=0 nm,which is themiddle of the sample across the thickness. (b)Profiles at the bottom surface of the cylinder, which is
the plane-cut at z=−10 nm. (c) Snapshots of themagnetisation profile at (from left to right) the bottom,middle and top layers of the
cylinder (which are plane-cuts) in the z-direction. The sample is zoomed at the central region of the layers ((x,y)ä[−22,
22] nm×[−22, 22] nm)where the skyrmion centre is located. Spins are drawn in a circle defined by the skyrmion radius, which is
denoted by a dashed line, and are coloured according to their radial component. The background illustrates the out of plane
component of themagnetisationmz, where blackmeansmz=1.
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stabilise a skyrmion tubemodulated along the thickness of the sample. A characteristic parameter of FeGe is the
helical length p= »∣ ∣L A D4 69.83 nmD .

Results fromFidimag simulations are shown infigure 3.Weobtain a skyrmion tube along the sample thickness
with a radius that slightly varies along the z-direction (wedefine as the radiuswheremz=0 in a x–yplane-cut). In a
slice of the cylinder at z=0,we compute a skyrmion radius of rsk≈15. 3 nm, and this value decreases towards the
top andbottomsurfaces down to 15.0 nm,which is negligible in the scale of the chosenmeshdiscretisation.We
emphasize thatwe arenot considering the demagnetisingfield in this problem,which can enhance this effect.

We analyse themagnetisationfield profiles for different slices (different z)byplotting the components of the
spins located across a layer diameter (or from the skyrmioncentre), (x, y)=(0, 0) nm,up to the sampleboundary,
(x, y)=(91.5, 0) nm, as shownby the reddashed line in every snapshot offigure 3(c). Lines infigures 3(a) and(b)
are a cubic spline interpolation of the data points,whichwe extrapolate up to x=91.5 nmsince theoutermost cell
centre lies at x=91 nm.Toquantify the radialmodulationof spins, and because of the axial symmetry of
skyrmions,we calculate the cylindrical componentsmr andmf (see appendixB). Consistentwith the results of
[33],figure 3(a) reveals that at themiddle of the sample, i.e. at the x–yplane-cut located at z=0, there is no extra
radial component of the spins,which is observed in a two-dimensional skyrmion. In addition, due the confined
geometry the azimuthal component slightly increases inmagnitude towards the sample boundarywith anopposite
sense of rotation than that of the skyrmion. Towards the sample surfaces, located at z=±10 nm, spins obtain an
extra radial component that increases linearlywith the z-distance.We illustrate this effect infigure 3(b) for the
bottom layer at z=−10 nm.This sameeffect occurs at the top layer, butwith the radial component pointing
inwards towards the skyrmion centre, thusmr looks like amirror image of that offigure 3(b). Furthermore,we
notice that towards the cylinder caps, after the pointwheremz=1, the radial component towards theboundary
changes sign asmfdoes. Snapshotswith a zoomed viewof the sample for the bottom,middle and top layers are
shown infigure 3(c).We show spins at the skyrmionboundary,wheremz=0, coloured according to their radial
component, andwith thebackground coloured according to themz component.

The linear dependence of the radial componentmr as a function of z towards the surfaces is shown in
figure 4, wherewe plotmr as a function of z at three different (x, y=0) positions in every layer: the centre,
x=0 nm, close to the skyrmion radius rsk (according to the discretisation of themesh), x=15 nm, and at the

Figure 4.Radial component of themagnetisation across the cylinder thickness at three different (x0, y) positions for every plane cut in
the z-direction. The y-position isfixed at the centre of the system at y=0. The chosen x coordinates are at the centre of the skyrmion
(x0=0), close to the skyrmion radius (x0=15 nm) and near the cylinder boundary (x0=91 nm). Data points were obtained from
Fidimag simulations. The top image shows the cylinder sample under studywith the three (x0, y) positionsmarked as dots, and lines
denoting where the data is being extracted for every position.
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sample boundary, x=91 nm. These spatial positions are shown as dots in the cylinder system at the top of
figure 4, with lines denotingwhere the data is being extracted. From the curves offigure 4we notice that the
radial increment ismaximal close to the skyrmion radius and is slightly smaller, andwith opposite orientation, at
the cylinder boundary normal to the radial direction.

Our results show that the skyrmion at the z=0 slice does not have a radialmodulation and the skyrmion
size remains nearly constant across the sample thickness. Hence, it would be possible to use a two-dimensional
model, similar to the one used in sections 3 and 5, to describe its profile. In performing this comparison (see
sectionS5 in the supplementarymaterial)wenoticed that the skyrmion in the cylinder systemhas a larger
skyrmion radius than themodel predicts. In [33] an approximate solution is provided as an ansatz for theΨ
angle, which is based on a linear dependence on z. Although this approximation qualitatively describes the
effects observed from the simulations, amore accurate solutionwould be possible to obtain by taking the general
caseΘ=Θ(r, z) andΨ=Ψ(f,z), but it generates a non-trivial set of nonlinear equations to beminimised.
Because of the consistent skyrmion size across z it is likely that the dependence on z in theΘ angle only appears as
aweak termor a constant, which differentiates the solution from that of the two-dimensionalmodel.

Testing this problemusing theOOMMFcodewe obtain equivalent results with the same skyrmion radius
size. In the case ofMuMax3, we found slight differences when comparing the radial componentmr of the
magnetisation at different layers, with respect to themagnitudes computedwith Fidimag, being the largest
differences close to the skyrmion radius at x0=15 nmwith an error of approximately 0.007. Furthermore,
results fromMuMax3 simulations produce a skyrmionwith larger radii compared to Fidimag andOOMMF,
withmagnitudes of approximately 15.8nmat to z=0 and 15.6nmat the cylinder caps. Themost likely reason
for this effect is the different boundary conditions imposed to theDMI calculation, as explained in section 4.
Nevertheless, the tendencies of the radial profiles of themagnetisation are still close to the ones obtainedwith the
other codes. Details of these simulations are provided in sectionS6 of the supplementarymaterial. Although a
cylinder system is also suitable forfinite element code simulations, a cuboid geometry ismore natural to afinite
difference discretisation.Hence, we performed a similar study using a cuboidwith periodic boundary
conditions. In general results on this geometry are equivalent to the cylinder but with twomain differences: the
periodicity removes the effects at the boundaries and the skyrmion is slightly larger in radius. These solutions are
shown in sectionS7 of the supplementarymaterial.

7.Dynamics: asymmetric spinwave propagation in the presence ofDMI

Analysing the dynamics of amagnetic system is a standardmethod to obtain information about themagnetic
properties of thematerial, such as damping or the excitationmodes of the system, among others. In particular, it
is known that the spinwave spectrumof amaterial withDMI saturatedwith an external biasfield, is
antisymmetric along specific directions where spinwaves are propagating [51, 52]. These directions depend on
the nature of theDMI, and from the antisymmetry it is possible to quantify a frequency shift frommodeswith
the samewave vectormagnitude but opposite orientation, i.e. fromwaves travelling in opposite directions. This
frequency shift depends linearly on theDMImagnitude of thematerial and hence it is a straightforwardmethod
formeasuring thismagnetic parameter. This has been proved inmultiple experiments based onBrillouin light
scattering [53–55]. Accordingly, a standard problembased on spinwaves offers the possibility to test theDMI
influence on the spin dynamics of the system.

In interfacial systems spinwaves propagating perpendicular to a saturating bias field, which are known as
Damon–Eshbachmodes, exhibit antisymmetric behaviour [51, 52]. To simulate this phenomenon, we refer to
themethod specified in [2] and use values from table 4,

1. Define a thin stripewith the long axis in the x-direction and thickness along the z-direction.

2. Saturate and relax the sample using a sufficiently strong biasmagnetic field. If the relaxation is donewith the
LLG equation it is possible to remove the precessional term and use a large damping to accelerate the
relaxation.

3. Excite the system with a weak periodic field, based on a sinc function, in a small region at the centre of the
stripe and applied in a specific direction x̂i,

p= -( ( )) ˆ ( )h f t t xh sinc 2 . 14exc 0 0 i

Wedelay this signal by t0, and then excite the systemduring the time τ, saving themagnetisation field every
interval of durationΔτ.

4. Using the magnetisation field files, we extract the dynamic components of the magnetisation for a chain of
magneticmoments along the x-direction across themiddle of the stripe. The dynamic component is
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obtained by subtracting, from the excited spins, the components of themagneticmoments of the relaxed
state obtained in step2.

5.We save these components in amatrix, where every column is amagnetisation component,mx,my ormz, of
the spins across the spatial x-direction, and every row represents a saved time step saved in the previous step.

6. Perform a two-dimensional spatial-temporal Fourier transform of the matrix, applying a Hanning
windowing function [56].

We define a stripewithmagnetic parameters specified in table 4, saturating themagnetisation into the y-
direction. For this samplewe take into account dipolar interactions because full theoreticalmodels that consider
this interaction, exchange, anisotropy and an applied field, arewell known in the literature [51, 52]. Including
the effect of the strayfield also helps to test its effect on a systemwithDMI. To obtain a spectrum for positive and
negative wave vectors, i.e. for waves propagating in opposite directions, we excite the system in a small region of
2 nmwidth at the centre of the stripe, with aweak periodic signal based on the cardinal sine wave function.We
exciteDamon–Eshbach spinwaves by applying the sincfield in the x-direction for a duration of τ=4 ns.
According to table 4we save τ/Δτ=4000 steps to generate the spinwave spectrum.

The result of the spinwaves simulation using Fidimagwith cell sizes of 2 nm×2 nm×1 nmvolume, after
processing the data, is shown infigure 5. In the spectrumwe compare the result using the theory ofMoon et al
[51] for systemswith interfacial DMI. The asymmetry in the spinwave depends on theDMI sign. To compare
the theoretical curve with the data from the simulationswe calculated theminimum in the dispersion relation
for both curves. For the simulationswe calculated the peakswith largest intensity from the spectrum and fit the
data with a second order polynomial using the data points in the range of k values in the interval [−0.299,
0.016]nm−1. The theory predicts that theminimum is located at k=−0.103 6 nm−1 with a frequency of

Table 4. Spinwave problem specifications.

Two-dimensional stripe

Dimensions 2000 nm×200 nm×1 nm
Magnetic parameters

A 13 pJm−1

D 3.0 mJ m−2

Ms 0.86MAm−1

μ0H (0.0, 0.4, 0.0)T
μ0hexc (0.04, 0.0, 0.0)T
f0 60 GHz

t0 50 ps

γ 1.76×1011HzT−1

α 0.01

τ 4ns

Δ τ 1 ps

Figure 5. SpectrumofDamon–Eshbach spinwaves in a stripe with interfacial DMI. The theoretical curve is computed from the theory
ofMoon et al [51] and the intensity plot refers to the result of the computer simulation of the systemusing the Fidimag code. The
intensity plot is given in logarithmic scale.
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12.409 8 GHz. From the Fidimag simulationwe estimate theminimumat k=−0.1030 nm−1 and
f=12.1495 GHz, which shows they are in good agreement. Furthermore, using the fit to the simulation datawe
can estimate theDMI constant from the frequency asymmetry and compare it with the value specified in the
simulation. The asymmetry [51, 52] is defined asΔ f=f (k)−f (−k)=ξ k, with x g p= -( )D M2 s

1 (see table 4
for the parameters). Therefore, computing the slope of the frequency difference fromopposite wave vector
numbers, and diving by the corresponding factor, we obtain theDMI constant. From the Fidimag data, we
obtain aDMI of 2.67 mJ m−2, close to themagnitude of 3.00 mJ m−2 predicted by the theory. As an extra test we
can notice from [52] that in systemswith crystallographic classesT or D d2 , theDamon–Eshbach spinwaveswill
not be antisymmetric, however theywould be for spinwaves excited along the field direction.

Infigure 5we observe the presence of extramodes with a smaller intensity signal. Thesemodes can befiltered
by setting an exponential damping towards the boundaries of the stripe [57] to avoid the reflection of spinwaves,
or by setting periodic boundary conditions. In the codes provided in themanuscript we implemented functions
for the dampingwith a simple exponential profile that can be used to only obtain themain branch from the
spectrum. Furthermore, a better approximation of the estimatedD value from the spinwave asymmetry could
be obtained by using longer simulation times τ and longer stripe lengths in order to improve the resolution of the
spinwave spectrum. In addition, performing the polynomial fit using a slightly larger range of k points around
the spectrumminimumcan also help since the curve fit is closer to the theoretical curve. However, since the
spectrum signal away from theminimum isweaker, some error is introduced to the perfect second order curve
tendency and the curve fit in this casemisrepresents the data points around theminimum. For example, using a
range of k points in the interval [−0.299, 0.076] nm−1, the estimatedDmagnitude significantly improves to
D=2.91 mJ m−2 but theminimumnow lies at (k,f )=(−0.106 nm−1, 11. 93 GHz).

Using theOOMMFandMuMax3 codes for simulating spinwaves in systemswithDMI produced equivalent
results tofigure 5.WithOOMMF simulationswe obtained aminimumat k=−0.1029 nm−1 and
f=12.1615 GHz. TheDMI constant is estimated as 2.66 mJ m−2. Simulations performedwithMuMax3
produce values of k=−0.1031 nm−1 and f=12.6245 GHz for the spectrumminimumand aDMI constant of
2.62 mJ m−2. These approximations can be improved using afinermesh discretisation, smaller time steps and
longer relaxation times for the spinwaves after the excitation. Results forOOMMFandMuMax3 simulations,
and details about the numerical interpolation to the curves are shown in sectionS8 of the supplementary
material.

8. Conclusions

Wehave proposed four standard problems to validate the implementation of simulations of helimagnetic
systemswithDMImechanisms found in crystals withCnv,T and D d2 symmetry class, where the former is also
relevant in interfacial systems. The strength of the threeDMI types we use in the problems can be quantified by a
singleDMI constant. For the one-dimensional and two-dimensional problemswe test the boundary condition
in confined geometries, which can be comparedwith analytical solutions.Moreover, profiles of different
skyrmionic textures, which vary according to theDMI kind, are characterised by their radial profile, in particular
at a distance r from the skyrmion centre where =m 0z , whichwe define as the skyrmion radius. Further, in
order to test the effect of theDMI on the dynamics of the systems, we propose a problembased on the excitation
of spinwaves and the calculation of their spectrum. In this case, we analyseDamon–Eshbach spinwaves in a
stripewith interfacial DMI (or, equivalently, a crystal withCnv symmetry), which is known for being
antisymmetric, and compare the solutionwith analytical theory. Finally, we analyse an isolated skyrmion in a
bulkmaterial with symmetry classT in a cylinder. In this sample the skyrmion profile propagates through the
thickness and acquires an extra radialmodulation.Wenotice that thismodulation is non-existent in a slice at the
middle of the sample along the thickness direction and increases linearly towards the cylinder caps (normal to
the z-direction). Additionally, it is greatest at the skyrmion radius (wheremz=0), decreases to zero at the
skyrmion centre and towards the skyrmion boundary (in every slice), and is present at the cylinder boundary
(normal to the radial direction)with an opposite orientation than the onewithin the skyrmion configuration.

Simulations in this study have been performed using codes based on the finite difference numerical
technique. Sincemany of the problems are comparedwith semi-analytical calculations the results can be also
applied tofinite element code simulations. Some finite element computationswith our non-publicly available
software Finmag are shown in sectionS9 of the supplementarymaterial. In addition, we compared our datawith
the results from anon-publicfinite-element code developed by RHertel, which is an entirely rewritten successor
of the TetraMag software [58, 59]. These results are also shown in sectionS9, wherewe obtained an excellent
quantitative agreement.

With this set of problemswe intend to cover the functionality of theDMI interaction implemented in a
micromagnetic code by testing boundary conditions, energyminimisation, which can be achieved using LLG
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dynamics orminimisation algorithms such as the conjugate gradientmethod, and spin dynamics. Overall, the
micromagnetic codes used in our testings significantly agreewith expected solutions and comparisons with the
theory, thus our results substantiate studies based onmicromagnetic simulationswith the three codes we have
tested.We hope this systematic analysis helps to promote the publication of codes in simulation based studies for
their corresponding validation and reproducibility, and serve as a basis formore effective development of new
simulation software.

For the realisation of some of the problems, we have implemented newDMImodules forMuMax3 [60] and
OOMMF [60–63] that take advantage of the computer softwares framework, such asGPU implementation in
MuMax3 or the robustness ofOOMMF.Wehave used the JupyterOOMMF (JOOMMF) interface to drive
OOMMFand analyse data [64]. Scripts and notebooks to reproduce the problems and data analysis from this
paper can be found in [60].
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AppendixA. Finite difference discretisation for theDMI

Assuming a two-dimensional film positioned in the x–y plane, the energy densityw for the interfacial DMI used
in this study ismodeled as
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When usingfinite differences, we can discretise the derivatives using a central difference at everymesh site.
Thus, for example, the central difference for the derivative ofmz (first term inside the round brackets of
equation (A2))with respect to x is
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wheremz(±x) is themz component of the closestmagneticmoment at themesh site in the±x-direction andΔx
is themesh discretisation in the x-direction. The other contributions fromneighbours in the±x-directions are
given by the third termof equation (A2).We can then collect the field terms contributed by the 4mesh
neighbours (in the {+x,−x,+y,−y} directions) of everymesh site, bywriting equation (A2) as

= + + - + + + -( ) ( ) ( ) ( ) ( )x x y yH h h h h . A4DMI DMI DMI DMI DMI

For instance, the field contribution from the+xmesh neighbour is

m

m

+ =-
D

+ - +

=-
D

´ ´ +

( ) ( ( ) ˆ ( ) ˆ)

([ ˆ ˆ] ( )) ( )

x
D

M x
m x x m x z

D

M x
z x x

h

m

2 1

2

2 1

2
. A5

s
z x

s

DMI
0

0

The contribution from the other neighbours have the same structure except the denominator for the
neighbours in the y-directionwill have a factor of 2Δ y instead of 2Δ x.We notice from equation (A5) that the
cross product is, in general, given by ´ ´( ˆ ˆ )z r mji , with r̂ ji the unit vector directed from the imesh site towards
the position of the neighbour in the j-direction.Hence, the calculation for theDMI field can be seen as that of the
discrete spinmodel with an equivalentDMvector of the form = ´( ˆ ˆ )z rD j ji i , i.e. thefield contribution from
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mesh site i can be computed as

å x= ´
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with x m= - D -( )D M x2 2j s j0
1 andΔ xj as themesh discretisation in the xj-direction. The discretised formof the

DMIfield given in equation (A6) confirms the originalmathematical structure of theDMIHamiltonian from
equation (1).

In the case of aT classmaterial, the finite difference discretisation leads to a calculation of themicromagnetic
DMIfieldwith a vector = r̂D j ji i . For a D d2 symmetry this vector is-r̂ ji for the neighbours in the x-directions
and r̂ij for the neighbours in the y-directions.

Appendix B. Cylindrical components

The cylindrical components of themagnetisation are computedwith a transformationmatrix according to
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where f = ( )y xarctan is the azimuthal angle.
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