Skip to main content

Research Repository

Advanced Search

Using semidirect products of groups to build classes of interconnection networks

Stewart, I.A.

Using semidirect products of groups to build classes of interconnection networks Thumbnail


Authors



Abstract

We build a framework within which we can define a wide range of Cayley graphs of semidirect products of abelian groups, suitable for use as interconnection networks and which we call toroidal semidirect product graphs. Our framework encompasses various existing interconnection networks such as cube-connected cycles, recursive cubes of rings, cube-connected circulants and dual-cubes, as well as certain multiswapped networks, pruned tori and biswapped networks; it also enables the construction of new hitherto uninvestigated but highly structured interconnection networks. We go on to design an efficient shortest-path routing algorithm that can be applied to any graph that can be defined within our framework. Our algorithm runs in time that is polylogarithmic in the size of the base group and polynomial in the size of the extending group of the given semidirect product. We also obtain analytic upper bounds on the diameters of our toroidal semidirect product graphs.

Citation

Stewart, I. (2020). Using semidirect products of groups to build classes of interconnection networks. Discrete Applied Mathematics, 283, 78-97. https://doi.org/10.1016/j.dam.2019.12.014

Journal Article Type Article
Acceptance Date Dec 18, 2019
Online Publication Date Dec 30, 2020
Publication Date Sep 15, 2020
Deposit Date Dec 23, 2019
Publicly Available Date Dec 30, 2020
Journal Discrete Applied Mathematics
Print ISSN 0166-218X
Electronic ISSN 1872-6771
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 283
Pages 78-97
DOI https://doi.org/10.1016/j.dam.2019.12.014
Public URL https://durham-repository.worktribe.com/output/1311362
Related Public URLs http://community.dur.ac.uk/i.a.stewart/Papers/Semidirect.pdf

Files






You might also like



Downloadable Citations