Professor Alexander Stasinski alexander.stasinski@durham.ac.uk
Professor
Professor Alexander Stasinski alexander.stasinski@durham.ac.uk
Professor
Andrea Vera-Gajardo
LetFqbe a finite field of characteristicp, and letW2(Fq)be thering of Witt vectors of length two overFq. We prove that for any reduc-tive group schemeGoverZsuch thatpis very good forG×Fq, the groupsG(Fq[t]/t2)andG(W2(Fq))have the same number of irreducible representa-tions of dimensiond, for eachd. Equivalently, there exists an isomorphism ofgroup algebrasC[G(Fq[t]/t2)]∼=C[G(W2(Fq))].
Stasinski, A., & Vera-Gajardo, A. (2019). Representations of reductive groups over finite local rings of length two. Journal of Algebra, 525, 171-190. https://doi.org/10.1016/j.jalgebra.2018.11.039
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 14, 2018 |
Online Publication Date | Dec 14, 2018 |
Publication Date | May 1, 2019 |
Deposit Date | Dec 27, 2018 |
Publicly Available Date | Dec 14, 2019 |
Journal | Journal of Algebra |
Print ISSN | 0021-8693 |
Electronic ISSN | 1090-266X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 525 |
Pages | 171-190 |
DOI | https://doi.org/10.1016/j.jalgebra.2018.11.039 |
Public URL | https://durham-repository.worktribe.com/output/1311145 |
Accepted Journal Article
(533 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rationality of twist representation zeta functions of compact p-adic analytic groups
(2024)
Journal Article
Representatives of similarity classes of matrices over PIDs corresponding to ideal classes
(2023)
Journal Article
A uniform proof of the finiteness of the class group of a global field
(2021)
Journal Article
Representations of SL over finite local rings of length two
(2020)
Journal Article
Representation growth of compact linear groups
(2019)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search