Skip to main content

Research Repository

Advanced Search

Carbohydrate-Supramolecular Gels: Adsorbents for Chromium(VI) Removal from Wastewater

Rizzo, Carla; Andrews, Jessica L.; Steed, Jonathan W.; D'Anna, Francesca

Carbohydrate-Supramolecular Gels: Adsorbents for Chromium(VI) Removal from Wastewater Thumbnail


Carla Rizzo

Jessica L. Andrews

Francesca D'Anna


Hypothesis: To overcome the contamination of water by heavy metals the adsorption of the pollutant on gel phases is an attractive solution since gels are inexpensive, potentially highly efficient and form a distinct phase while allowing diffusion of the contaminated water throughout the material. This work tests the chromium(VI) adsorbent capacity of new supramolecular gels for Chromium(VI) removal from wastewater. Experiments: First hydrophobic imidazolium salts of carbohydrate anions were synthesised as new gelators. Subsequently, they were dissolved in a solvent by heating and, after cooling overnight, to give the formation of supramolecular gels. The properties of the resulting gels, such as thermal stability, mechanical strength, morphology, rheology, and kinetics of gel formation, were studied as a function of gelator structure, gelation solvent and pollutant removal efficiency. Findings: Carbohydrate-derived gels showed the best removal capacity, i.e. 97% in 24 h. Interestingly, in one case, the reduction of chromium(VI) to chromium(III) also occurred after the adsorption process, and this phenomenon has been analysed using 1H NMR spectroscopy, IR spectroscopy, and SEM. The most efficient gel can reach an adsorption capacity of 598 mg/g in contrast to a value of 153 mg/g for the most effectively best hydrogels reported to date. The new gel can be also recycled up to 4 times. These findings suggest that these new, supramolecular hydrogels have potential applications in environmental remediation.


Rizzo, C., Andrews, J. L., Steed, J. W., & D'Anna, F. (2019). Carbohydrate-Supramolecular Gels: Adsorbents for Chromium(VI) Removal from Wastewater. Journal of Colloid and Interface Science, 548, 184-196.

Journal Article Type Article
Acceptance Date Apr 11, 2019
Online Publication Date Apr 11, 2019
Publication Date Jul 15, 2019
Deposit Date Apr 12, 2019
Publicly Available Date Apr 11, 2020
Journal Journal of colloid and interface science.
Electronic ISSN 1095-7103
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 548
Pages 184-196


You might also like

Downloadable Citations