Rhys E. Williams
Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics
Williams, Rhys E.; Ramasse, Quentin M.; McKenna, Keith P.; Phillips, Laurie J.; Yates, Peter J.; Hutter, Oliver S.; Durose, Ken; Major, Jonathan D.; Mendis, Budhika G.
Authors
Quentin M. Ramasse
Keith P. McKenna
Laurie J. Phillips
Peter J. Yates
Oliver S. Hutter
Ken Durose
Jonathan D. Major
Professor Buddhika Mendis b.g.mendis@durham.ac.uk
Professor
Abstract
The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6)n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6)n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6)n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.
Citation
Williams, R. E., Ramasse, Q. M., McKenna, K. P., Phillips, L. J., Yates, P. J., Hutter, O. S., Durose, K., Major, J. D., & Mendis, B. G. (2020). Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics. ACS Applied Materials and Interfaces, 12(19), 21730-21738. https://doi.org/10.1021/acsami.0c03690
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 21, 2020 |
Online Publication Date | Apr 21, 2020 |
Publication Date | May 13, 2020 |
Deposit Date | May 22, 2020 |
Publicly Available Date | Apr 21, 2021 |
Journal | ACS Applied Materials and Interfaces |
Print ISSN | 1944-8244 |
Electronic ISSN | 1944-8252 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 12 |
Issue | 19 |
Pages | 21730-21738 |
DOI | https://doi.org/10.1021/acsami.0c03690 |
Public URL | https://durham-repository.worktribe.com/output/1301611 |
Files
Accepted Journal Article
(1.8 Mb)
PDF
Copyright Statement
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS applied materials & interfaces copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.0c03690
You might also like
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search