Iestyn D. Barr
The dynamics of mountain erosion: cirque growth slows as landscapes age
Barr, Iestyn D.; Ely, Jeremy C.; Spagnolo, Matteo; Evans, Ian S.; Tomkins, Matt D.
Abstract
Glacial cirques are widely used palaeoenvironmental indicators, and are key to understanding the role of glaciers in shaping mountain topography. However, notable uncertainty persists regarding the rate and timing of cirque erosion. In order to address this uncertainty, we analyse the dimensions of 2208 cirques in Britain and Ireland and model ice accumulation to investigate the degree of coupling between glacier occupation times and cirque growth. Results indicate that during the last ~120 ka, cirques were glacier‐free for an average of 52.0 ± 21.2 ka (43 ± 18%); occupied by small (largely cirque‐confined) glaciers for 16.2 ± 9.9 ka (14 ± 8%); and occupied by large glaciers, including ice sheets, for 51.8 ± 18.6 ka (43 ± 16%). Over the entire Quaternary (i.e., 2.6 Ma), we estimate that cirques were glacier‐free for 1.1 ± 0.5 Ma; occupied by small glaciers for 0.3 ± 0.2 Ma; and occupied by large glaciers for 1.1 ± 0.4 Ma. Comparing occupation times to cirque depths, and calculating required erosion rates reveals that continuous cirque growth during glacier occupation is unlikely. Instead, we propose that cirques attained much of their size during the first occupation of a non‐glacially sculpted landscape (perhaps during the timeframe of a single glacial cycle). During subsequent glacier occupations, cirque growth may have slowed considerably, with the highest rates of subglacial erosion focused during periods of marginal (small glacier) glaciation. We propose comparatively slow rates of growth following initial cirque development because a ‘least resistance’ shape is formed, and as cirques deepen, sediment becomes trapped subglacially, partly protecting the bedrock from subsequent erosion. In support of the idea of rapid cirque growth, we present evidence from northern British Columbia, where cirques of comparable size to those in Britain and Ireland developed in less than 140 ka.
Citation
Barr, I. D., Ely, J. C., Spagnolo, M., Evans, I. S., & Tomkins, M. D. (2019). The dynamics of mountain erosion: cirque growth slows as landscapes age. Earth Surface Processes and Landforms, 44(13), 2628-2637. https://doi.org/10.1002/esp.4688
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 18, 2019 |
Online Publication Date | Jul 30, 2019 |
Publication Date | Oct 31, 2019 |
Deposit Date | Jul 2, 2019 |
Publicly Available Date | Jul 30, 2020 |
Journal | Earth Surface Processes and Landforms |
Print ISSN | 0197-9337 |
Electronic ISSN | 1096-9837 |
Publisher | British Society for Geomorphology |
Peer Reviewed | Peer Reviewed |
Volume | 44 |
Issue | 13 |
Pages | 2628-2637 |
DOI | https://doi.org/10.1002/esp.4688 |
Public URL | https://durham-repository.worktribe.com/output/1298494 |
Files
Accepted Journal Article
(1.7 Mb)
PDF
Copyright Statement
This is the accepted version of the following article: Barr, Iestyn D., Ely, Jeremy C., Spagnolo, Matteo, Evans, Ian S. & Tomkins, Matt D. (2019). The dynamics of mountain erosion: cirque growth slows as landscapes age. Earth Surface Processes and Landforms 44(13): 2628-2637 which has been published in final form at https://doi.org/10.1002/esp.4688. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
You might also like
The erosion of glaciated mountains: evidence from hypsoclinometry
(2019)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search