Chuangxin He
The formation and evolution of turbulent swirling vortex rings generated by axial swirlers
He, Chuangxin; Gan, Lian; Liu, Yingzheng
Abstract
The present work investigates the formation process and early stage evolution of turbulent swirling vortex rings, by using planar Particle Image Velocimetry (PIV) and Large Eddy Simulation (LES). Vortex rings are produced in a piston-nozzle arrangement with swirl generated by 3D-printed axial swirlers in experiments. Idealised solid-body rotation is applied in LES to evaluate the effect of nozzle exit velocity profile in experiments. The Reynolds number (Re) based on the nozzle diameter D and the slug velocity U0 in the nozzle is 20,000. The swirl number S generated ranges from 0 (zero-swirl vortex ring) and 1.1, covering the two critical swirl numbers previously identified in a swirling jet. Both PIV and LES results show that the formation number F decreases linearly as S increases, with the maximum F ≈ 2.6 at S = 0 (produced by the swirler with straight vanes) and minimum F = 1.9 at S = 1.1. The corresponding maximum attainable circulation in the nozzle axis parallel plane also diminishes with increasing S. Evolution of compact rings produced by a stroke ratio L/D = 1.5 reveals that circulation decay rate is largely proportional to S. The trajectory of the vortex core in the axial direction, hence the ring axial propagation velocity, decreases as S, while that in the radial direction and the radial propagation velocity, increase with S. An empirical scaling function is proposed to scale these variables.
Citation
He, C., Gan, L., & Liu, Y. (2020). The formation and evolution of turbulent swirling vortex rings generated by axial swirlers. Flow, Turbulence and Combustion, 104(4), 795-816. https://doi.org/10.1007/s10494-019-00076-2
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 13, 2019 |
Online Publication Date | Nov 25, 2019 |
Publication Date | Apr 30, 2020 |
Deposit Date | Sep 17, 2019 |
Publicly Available Date | Nov 27, 2019 |
Journal | Flow, Turbulence and Combustion |
Print ISSN | 1386-6184 |
Electronic ISSN | 1573-1987 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 104 |
Issue | 4 |
Pages | 795-816 |
DOI | https://doi.org/10.1007/s10494-019-00076-2 |
Public URL | https://durham-repository.worktribe.com/output/1291392 |
Files
Published Journal Article
(2.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Published Journal Article (Advance online version)
(2.6 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
You might also like
A cavalpulmonary assist device utilising impedance pumping enhanced by peristaltic effect
(2024)
Journal Article
Formation and evolution of vortex rings with weak to moderate swirl
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search