Skip to main content

Research Repository

Advanced Search

System Design and Optimisation Study on a Novel CCHP System Integrated with a Hybrid Energy Storage System and an ORC

Ji, Jie; Ding, Zujun; Xia, Xin; Wang, Yeqin; Huang, Hui; Zhang, Chu; Peng, Tian; Wang, Xiaolu; Nazir, Muhammad Shahzad; Zhang, Yue; Liu, Baolian; Jia, Xiaoying; Li, Ruisheng; Wang, Yaodong

System Design and Optimisation Study on a Novel CCHP System Integrated with a Hybrid Energy Storage System and an ORC Thumbnail


Authors

Jie Ji

Zujun Ding

Xin Xia

Hui Huang

Chu Zhang

Tian Peng

Muhammad Shahzad Nazir

Yue Zhang

Baolian Liu

Xiaoying Jia

Ruisheng Li



Abstract

For achieving higher energy transferring efficiency from the resources to the load, the Combined Cooling, Heating, and Power (CCHP) systems have been widely researched and applied as an efficient approach. The key idea of this study is designing a novel structure of a hybrid CCHP system and evaluating its performance. In this research, there is a hybrid energy storage unit enhancing the whole system’s operation flexibility while supplying cooling, heating, and power. An ORC system is integrated into the CCHP system which takes responsibility of absorbing the low-temperature heat source for electricity generation. There are a few research studies focusing on the CCHP systems’ performance with this structure. In order to evaluate the integrated system’s performance, investigation and optimisation work has been conducted with the approaches of experimental studies and modelling simulation. The integrated system’s configuration, the model building process of several key components, the optimisation method, and the case studies are discussed and analysed in this study. The design of the integrated system and the control strategy are displayed in detail. Several sets of dynamic energy demand profiles are selected to evaluate the performance of the integrated system. The simulation study of the system supplying selected scenarios of loads is conducted. A comprehensive evaluation report indicates that the system’s efficiency during each study process differs while supplying different loads. The results include the power supplied by each component, the energy consumed by each type of load, and the efficiency improvements. It is found that the integrated system fully satisfies the selected domestic loads and various selected scenarios of loads with high efficiency. Compared to conventional power plants or CHP systems, the system efficiency enhancement comes from higher amount of recovery waste heat. Especially, the ORC system can absorb the low-temperature heat source for electricity generation. Compared to the original following electrical load (FEL) control strategy, the optimisation process brings overall efficiency improvements. The system’s overall efficiency was increased by from 3%, 3.18%, 2.85%, 17.11%, 8.89%, and 21.7% in the second case studies. Through the whole study, the main challenge lies within the design and the energy management of the integrated system.

Citation

Ji, J., Ding, Z., Xia, X., Wang, Y., Huang, H., Zhang, C., …Wang, Y. (2020). System Design and Optimisation Study on a Novel CCHP System Integrated with a Hybrid Energy Storage System and an ORC. Complexity, 2020, Article 1278751. https://doi.org/10.1155/2020/1278751

Journal Article Type Article
Acceptance Date Jul 6, 2020
Online Publication Date Sep 26, 2020
Publication Date 2020
Deposit Date Oct 28, 2020
Publicly Available Date Oct 28, 2020
Journal Complexity
Print ISSN 1076-2787
Electronic ISSN 1099-0526
Publisher Hindawi
Peer Reviewed Peer Reviewed
Volume 2020
Article Number 1278751
DOI https://doi.org/10.1155/2020/1278751
Public URL https://durham-repository.worktribe.com/output/1288385

Files

Published Journal Article (2.2 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Copyright © 2020 Jie Ji et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.





You might also like



Downloadable Citations