Jie Ji
System Design and Optimisation Study on a Novel CCHP System Integrated with a Hybrid Energy Storage System and an ORC
Ji, Jie; Ding, Zujun; Xia, Xin; Wang, Yeqin; Huang, Hui; Zhang, Chu; Peng, Tian; Wang, Xiaolu; Nazir, Muhammad Shahzad; Zhang, Yue; Liu, Baolian; Jia, Xiaoying; Li, Ruisheng; Wang, Yaodong
Authors
Zujun Ding
Xin Xia
Professor Yaodong Wang yaodong.wang@durham.ac.uk
Professor
Hui Huang
Chu Zhang
Tian Peng
Professor Yaodong Wang yaodong.wang@durham.ac.uk
Professor
Muhammad Shahzad Nazir
Yue Zhang
Baolian Liu
Xiaoying Jia
Ruisheng Li
Professor Yaodong Wang yaodong.wang@durham.ac.uk
Professor
Abstract
For achieving higher energy transferring efficiency from the resources to the load, the Combined Cooling, Heating, and Power (CCHP) systems have been widely researched and applied as an efficient approach. The key idea of this study is designing a novel structure of a hybrid CCHP system and evaluating its performance. In this research, there is a hybrid energy storage unit enhancing the whole system’s operation flexibility while supplying cooling, heating, and power. An ORC system is integrated into the CCHP system which takes responsibility of absorbing the low-temperature heat source for electricity generation. There are a few research studies focusing on the CCHP systems’ performance with this structure. In order to evaluate the integrated system’s performance, investigation and optimisation work has been conducted with the approaches of experimental studies and modelling simulation. The integrated system’s configuration, the model building process of several key components, the optimisation method, and the case studies are discussed and analysed in this study. The design of the integrated system and the control strategy are displayed in detail. Several sets of dynamic energy demand profiles are selected to evaluate the performance of the integrated system. The simulation study of the system supplying selected scenarios of loads is conducted. A comprehensive evaluation report indicates that the system’s efficiency during each study process differs while supplying different loads. The results include the power supplied by each component, the energy consumed by each type of load, and the efficiency improvements. It is found that the integrated system fully satisfies the selected domestic loads and various selected scenarios of loads with high efficiency. Compared to conventional power plants or CHP systems, the system efficiency enhancement comes from higher amount of recovery waste heat. Especially, the ORC system can absorb the low-temperature heat source for electricity generation. Compared to the original following electrical load (FEL) control strategy, the optimisation process brings overall efficiency improvements. The system’s overall efficiency was increased by from 3%, 3.18%, 2.85%, 17.11%, 8.89%, and 21.7% in the second case studies. Through the whole study, the main challenge lies within the design and the energy management of the integrated system.
Citation
Ji, J., Ding, Z., Xia, X., Wang, Y., Huang, H., Zhang, C., …Wang, Y. (2020). System Design and Optimisation Study on a Novel CCHP System Integrated with a Hybrid Energy Storage System and an ORC. Complexity, 2020, Article 1278751. https://doi.org/10.1155/2020/1278751
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 6, 2020 |
Online Publication Date | Sep 26, 2020 |
Publication Date | 2020 |
Deposit Date | Oct 28, 2020 |
Publicly Available Date | Oct 28, 2020 |
Journal | Complexity |
Print ISSN | 1076-2787 |
Electronic ISSN | 1099-0526 |
Publisher | Hindawi |
Peer Reviewed | Peer Reviewed |
Volume | 2020 |
Article Number | 1278751 |
DOI | https://doi.org/10.1155/2020/1278751 |
Public URL | https://durham-repository.worktribe.com/output/1288385 |
Files
Published Journal Article
(2.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Copyright © 2020 Jie Ji et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
The study of a novel magnetic crankshaft
(2024)
Journal Article
Research and innovation identified to decarbonise the maritime sector
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search