Qibai Wu
Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine
Wu, Qibai; Xie, Xialin; Wang, Yaodong; Roskilly, Tony
Abstract
This study investigates the effects of carbon coated aluminum (Al@C) nanoparticles added to diesel-biodiesel blends as additives on engine performance and emissions. The Al@C nanoparticles are added into the diesel-biodiesel fuel in the mass fractions of 30 ppm under ultrasonic mixing. The experimental tests are conducted using a Cummins diesel engine. For comparison, three kinds of fuels including diesel-biodiesel blend (B10), B10 with 4% ethanol (B10E4), and B10 with 4% ethanol and 30-ppm nanoparticles (B10E4N30) are used for the tests under the European Stationary Cycle (ESC). The results show clearly that adding Al@C nanoparticles can reduce brake specific fuel consumption (BSFC) by 6% on average; along with a drop of 6% in NOX emission and CO emission is reduced by 19%, comparing with B10. However, the presence of ethanol in fuel blend increases THC emission. Nevertheless, addition of Al@C nanoparticles reduces THC emission by 14.5% compared with B10E4. The emission of particles number (PN) is increased by 2.2 times for B10E4N30 on average but is reduced by 11.8% for B10E4 (adding ethanol only) on the contrary, compared to B10. The studies on morphology and phase structure of nanoparticles after combustion indicate that Al@C nanoparticles have been transformed into alumina nanoparticles.
Citation
Wu, Q., Xie, X., Wang, Y., & Roskilly, T. (2018). Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine. Applied Energy, 221, 597-604. https://doi.org/10.1016/j.apenergy.2018.03.157
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 30, 2018 |
Online Publication Date | Apr 17, 2018 |
Publication Date | Jul 1, 2018 |
Deposit Date | Nov 4, 2019 |
Publicly Available Date | Nov 4, 2019 |
Journal | Applied Energy |
Print ISSN | 0306-2619 |
Electronic ISSN | 1872-9118 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 221 |
Pages | 597-604 |
DOI | https://doi.org/10.1016/j.apenergy.2018.03.157 |
Public URL | https://durham-repository.worktribe.com/output/1284729 |
Related Public URLs | https://eprint.ncl.ac.uk/247460 |
Files
Accepted Journal Article
(421 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
The study of a novel magnetic crankshaft
(2024)
Journal Article
Research and innovation identified to decarbonise the maritime sector
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search