V.G. Toy
Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling
Toy, V.G.; Boulton, C.J.; Sutherland, R.; Townend, J.; Norris, R.J.; Little, T.A.; Prior, D.J.; Mariani, E.; Faulkner, D.; Menzies, C.D.; Scott, H.; Carpenter, B.M.
Authors
C.J. Boulton
R. Sutherland
J. Townend
R.J. Norris
T.A. Little
D.J. Prior
E. Mariani
D. Faulkner
Dr Catriona Menzies catriona.d.menzies@durham.ac.uk
Associate Professor
H. Scott
B.M. Carpenter
Abstract
The first phase of the Deep Fault Drilling Project (DFDP-1) yielded a continuous lithological transect through fault rock surrounding the Alpine fault (South Island, New Zealand). This allowed micrometer- to decimeter-scale variations in fault rock lithology and structure to be delineated on either side of two principal slip zones intersected by DFDP-1A and DFDP-1B. Here, we provide a comprehensive analysis of fault rock lithologies within 70 m of the Alpine fault based on analysis of hand specimens and detailed petrographic and petrologic analysis. The sequence of fault rock lithologies is consistent with that inferred previously from outcrop observations, but the continuous section afforded by DFDP-1 permits new insight into the spatial and genetic relationships between different lithologies and structures. We identify principal slip zone gouge, and cataclasite-series rocks, formed by multiple increments of shear deformation at up to coseismic slip rates. A 20−30-m-thick package of these rocks (including the principal slip zone) forms the fault core, which has accommodated most of the brittle shear displacement. This deformation has overprinted ultramylonites deformed mostly by grain-size-insensitive dislocation creep. Outside the fault core, ultramylonites contain low-displacement brittle fractures that are part of the fault damage zone. Fault rocks presently found in the hanging wall of the Alpine fault are inferred to have been derived from protoliths on both sides of the present-day principal slip zone, specifically the hanging-wall Alpine Schist and footwall Greenland Group. This implies that, at seismogenic depths, the Alpine fault is either a single zone of focused brittle shear that moves laterally over time, or it consists of multiple strands. Ultramylonites, cataclasites, and fault gouge represent distinct zones into which deformation has localized, but within the brittle regime, particularly, it is not clear whether this localization accompanies reductions in pressure and temperature during exhumation or whether it occurs throughout the seismogenic regime. These two contrasting possibilities should be a focus of future studies of fault zone architecture.
Citation
Toy, V., Boulton, C., Sutherland, R., Townend, J., Norris, R., Little, T., …Carpenter, B. (2017). Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling. Lithosphere, 2, 155-173. https://doi.org/10.1130/l395.1
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 16, 2015 |
Online Publication Date | Apr 1, 2015 |
Publication Date | 2017-03 |
Deposit Date | Oct 2, 2019 |
Journal | Lithosphere |
Print ISSN | 1941-8264 |
Publisher | GeoScienceWorld |
Peer Reviewed | Peer Reviewed |
Volume | 2 |
Pages | 155-173 |
DOI | https://doi.org/10.1130/l395.1 |
Public URL | https://durham-repository.worktribe.com/output/1284497 |
You might also like
Extreme hydrothermal conditions at an active plate-bounding fault
(2017)
Journal Article
Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand
(2017)
Journal Article
Drilling reveals fluid control on architecture and rupture of the Alpine Fault, New Zealand
(2012)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search