Skip to main content

Research Repository

Advanced Search

Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 1: characterizing molecular weight

Bucknall, Clive; Altstädt, Volker; Auhl, Dietmar; Buckley, Paul; Dijkstra, Dirk; Galeski, Andrzej; Gögelein, Christoph; Handge, Ulrich A.; He, Jiasong; Liu, Chen-Yang; Michler, Goerg; Piorkowska, Ewa; Slouf, Miroslav; Vittorias, Iakovos; Wu, Jun Jie

Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 1: characterizing molecular weight Thumbnail


Authors

Clive Bucknall

Volker Altstädt

Dietmar Auhl

Paul Buckley

Dirk Dijkstra

Andrzej Galeski

Christoph Gögelein

Ulrich A. Handge

Jiasong He

Chen-Yang Liu

Goerg Michler

Ewa Piorkowska

Miroslav Slouf

Iakovos Vittorias

Profile image of Junjie Wu

Junjie Wu junjie.wu@durham.ac.uk
Honorary Professor



Abstract

The aim of this project was to study the efficacy of current methods of quality control and quality assurance for ultra-high molecular weight polyethylene (UHMWPE) products, and find improvements where possible. Intrinsic viscosity (IV) tests were performed on three grades of polyethylene with weight average relative molar masses ̅ M w of about 6 × 105, 5.0 × 106 and 9.0 × 106. Results from three laboratories showed substantial scatter, probably because different methods were used to make and test solutions. Tensile tests were carried out to 600 % extension at 150 °C under both constant applied load and constant Hencky strain rate, on compression mouldings made by a leading manufacturer of ultra-high molecular weight polyethylene. They gave low values of ̅ M w, suggesting incomplete entanglement at ‘grain boundaries’ between powder particles. Results from conventional melt-rheology tests are presented, and their relevance to quality control and assurance is discussed. Attempts to calculate molecular weights from these data met with limited success because of extended relaxation times. Suggestions are made for improving international standards for IV testing of UHMWPE, by investigating the various factors that can cause significant errors, and by introducing methods for checking the homogeneity (and hence validity) of the solutions tested. Part 2 addresses characterization of crystallinity and structure. Part 3 covers mechanical properties, and Part 4 focuses on the sporadic crack propagation behaviour exhibited by all three grades of UHMWPE in fatigue tests on 10 mm thick compact tension specimens.

Citation

Bucknall, C., Altstädt, V., Auhl, D., Buckley, P., Dijkstra, D., Galeski, A., Gögelein, C., Handge, U. A., He, J., Liu, C.-Y., Michler, G., Piorkowska, E., Slouf, M., Vittorias, I., & Wu, J. J. (2020). Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 1: characterizing molecular weight. Pure and Applied Chemistry, 92(9), 1469-1483. https://doi.org/10.1515/pac-2019-0405

Journal Article Type Article
Acceptance Date Mar 20, 2020
Online Publication Date Aug 24, 2020
Publication Date 2020
Deposit Date Dec 9, 2020
Publicly Available Date Dec 9, 2020
Journal Pure and Applied Chemistry
Print ISSN 0033-4545
Electronic ISSN 1365-3075
Publisher International Union of Pure and Applied Chemistry
Peer Reviewed Peer Reviewed
Volume 92
Issue 9
Pages 1469-1483
DOI https://doi.org/10.1515/pac-2019-0405
Public URL https://durham-repository.worktribe.com/output/1283735

Files






You might also like



Downloadable Citations