Fernando Galaz-García fernando.galaz-garcia@durham.ac.uk
Associate Professor
Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension
Galaz-Garcia, Fernando; Kerin, Martin
Authors
Dr Martin Kerin martin.p.kerin@durham.ac.uk
Associate Professor
Abstract
Let Mn, n ∈ {4, 5, 6}, be a compact, simply connected n-manifold which admits some Riemannian metric with non-negative curvature and an isometry group of maximal possible rank. Then any smooth, effective action on Mn by a torus Tn−2 is equivariantly diffeomorphic to an isometric action on a normal biquotient. Furthermore, it follows that any effective, isometric circle action on a compact, simply connected, nonnegatively curved four-dimensional manifold is equivariantly diffeomorphic to an effective, isometric action on a normal biquotient.
Citation
Galaz-Garcia, F., & Kerin, M. (2014). Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension. Mathematische Zeitschrift, 276(1-2), 133-152. https://doi.org/10.1007/s00209-013-1190-5
Journal Article Type | Article |
---|---|
Acceptance Date | May 12, 2013 |
Online Publication Date | Jul 11, 2013 |
Publication Date | 2014-02 |
Deposit Date | Dec 12, 2019 |
Publicly Available Date | Nov 15, 2022 |
Journal | Mathematische Zeitschrift |
Print ISSN | 0025-5874 |
Electronic ISSN | 1432-1823 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 276 |
Issue | 1-2 |
Pages | 133-152 |
DOI | https://doi.org/10.1007/s00209-013-1190-5 |
Public URL | https://durham-repository.worktribe.com/output/1281060 |
Related Public URLs | https://arxiv.org/abs/1111.1640 |
Files
Accepted Journal Article
(352 Kb)
PDF
Copyright Statement
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00209-013-1190-5
You might also like
Manifolds that admit a double disk-bundle decomposition
(2023)
Journal Article
Semi-Free Actions with Manifold Orbit Spaces
(2020)
Journal Article
Fake Lens Spaces and Non-Negative Sectional Curvature
(2020)
Book Chapter
Highly connected 7-manifolds and non-negative sectional curvature
(2020)
Journal Article
Torus actions on rationally elliptic manifolds
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search