Professor Fernando Galaz Garcia fernando.galaz-garcia@durham.ac.uk
Associate Professor
Professor Fernando Galaz Garcia fernando.galaz-garcia@durham.ac.uk
Associate Professor
Dr Martin Kerin martin.p.kerin@durham.ac.uk
Assistant Professor
Let Mn, n ∈ {4, 5, 6}, be a compact, simply connected n-manifold which admits some Riemannian metric with non-negative curvature and an isometry group of maximal possible rank. Then any smooth, effective action on Mn by a torus Tn−2 is equivariantly diffeomorphic to an isometric action on a normal biquotient. Furthermore, it follows that any effective, isometric circle action on a compact, simply connected, nonnegatively curved four-dimensional manifold is equivariantly diffeomorphic to an effective, isometric action on a normal biquotient.
Galaz-Garcia, F., & Kerin, M. (2014). Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension. Mathematische Zeitschrift, 276(1-2), 133-152. https://doi.org/10.1007/s00209-013-1190-5
Journal Article Type | Article |
---|---|
Acceptance Date | May 12, 2013 |
Online Publication Date | Jul 11, 2013 |
Publication Date | 2014-02 |
Deposit Date | Dec 12, 2019 |
Publicly Available Date | Nov 15, 2022 |
Journal | Mathematische Zeitschrift |
Print ISSN | 0025-5874 |
Electronic ISSN | 1432-1823 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 276 |
Issue | 1-2 |
Pages | 133-152 |
DOI | https://doi.org/10.1007/s00209-013-1190-5 |
Related Public URLs | https://arxiv.org/abs/1111.1640 |
Accepted Journal Article
(352 Kb)
PDF
Copyright Statement
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00209-013-1190-5
Semi-Free Actions with Manifold Orbit Spaces
(2020)
Journal Article
Fake Lens Spaces and Non-Negative Sectional Curvature
(2020)
Book Chapter
Highly connected 7-manifolds and non-negative sectional curvature
(2020)
Journal Article
Torus actions on rationally elliptic manifolds
(2020)
Journal Article
Non-negative curvature and the linking form
(2019)
Other
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Advanced Search